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ABSTRACT 

Virtual world simulations are realistic when each individual component is simulated in a manner 

that reflects reality. For an underwater virtual world that simulates acoustic detection, a physically based 

sonar propagation model is required if ranges in excess of tens of meters are expected. 

This thesis creates an application programming interface (API) for real-time 3D computation 

and visualization of acoustic energy propagation. The API provides features for generating complex 

physically based sonar information at interaction rates, and then visualizing that acoustic information. 

The simulation is programmed in Java and runs either as a stand-alone program or as a script in a web 

browser. This program generates Virtual Reality Modeling Language (VRML 97) compliant code that 

can be viewed from any VRML-capable browser. This approach allows the characteristics of the energy 

propagation to be calculated with high precision and observed in 3D. 

As sonar system information bandwidth becomes larger, more intuitive ways of presenting 

information to a user will be required Higher information density in a more intuitive format can free the 

user from integrating the data himself and allow quicker reaction times. This thesis and the API provide 

the foundation for fundamental advances in sonar modeling and visualization. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 

A. OVERVIEW 1 

B. MOTIVATION 2 

C. PURPOSE 2 

D. ORGANIZATION 2 

H. RELATED WORK 5 

A. INTRODUCTION 5 

B.AUV VIRTUAL WORLD 5 

1. What It Is 5 

2. What Are Its Acoustic Limitations 6 

C.AUV TACTICAL MINEFIELD SEARCH 8 

1. What It Is 8 

2. What Are Its limitations 9 

D. MANTA CONCEPT 9 

1. What It Is 9 

2. Why Is It Important 10 

E. SONAR MODELING AND VISUALIZATION 11 

1. Sonar Modeling 11 

2. Sonar Visualization 12 

F. SUMMARY 13 

HI. PROBLEM STATEMENT 15 

A INTRODUCTION 15 

B. PROPOSED FRAMEWORK 15 

vn 



C. FACTORS AFFECTING THE SOLUTION 15 

D. POSSIBLE SOLUTIONS 16 

17 1. Available Sonar Models * 

2. Type Of Simulation 19 

90 3. Networking Considerations ^ 

90 4. Visualization zu 

E. SUMMARY 21 

IV. RECURSIVE RAY ACOUSTICS (RRA) DERIVATION 23 

A. INTRODUCTION : 23 

B. THE DIFFERENTIAL EQUATION 23 

C. THE DIFFERENCE EQUATION 26 

D. SOLUTION TO THE TRANSPORT EQUATION 27 

E. SUMMARY 29 

V. MODELING OF RECURSIVE RAY ACOUSTICS (RRA) 31 

A. INTRODUCTION 31 

B. MODEL ENGINEERING 31 

C. THE COMPLETE RRA EQUATIONS 33 

D.RAY MODEL 35 

E. BEAM MODEL 40 

F.LOBEMODEL 43 

G. SURFACE MODEL U 

H. BOTTOM MODEL 47 

I. SOUND SPEED PROFILE (SSP) MODEL 48 

J. TARGET MODEL 48 

K. PINGSERVERANDPINGER MODELS 50 

vni 



L. SUMMARY 51 

VI. SONAR VISUALIZATION 53 

A. INTRODUCTION 53 

B. VISUALIZATION CONSIDERATIONS 54 

1. Tactical Visualization 54 

2. High-Dimensional Space 55 

3. Available Graphics Parameters 56 

4. Mapping Data to Graphics Parameters 56 

5. No Single Right Answer 57 

6. Initial Visualization Recommendations 57 

C.RRA SONAR VISUALIZATION MODEL 58 

1. Interactive Server Model 58 

a. Data Flow 58 

b. Example Execution 59 

2. Stand-alone Server 61 

a. Data Flow 61 

b. Example Execution 62 

D. CONCLUSIONS 62 

VH. MODEL IMPLEMENTATION AND INTEGRATION 63 

A. INTRODUCTION 63 

B. CHOICE OF PROGRAMMING LANGUAGE 63 

1. Cross-platform Compatibility 63 

2. Number-Crunching Speed 64 

3. Visualization 65 

4. Networking 65 

rx 



C. MODEL IMPLEMENTATION 66 

l.RRA Implementation 66 

2. Visualization Implementation 67 

D.INTEGRATION 68 

1. Standalone 68 

2. Interactive 69 

E. CONCLUSIONS 69 

Vm. SIMULATION RESULTS 71 

A INTRODUCTION 71 

B.RRA TEMPORAL AND POSITIONAL ACCURACY 71 

C. SIMULATION ACCURACY: JAVA VERSUS FORTRAN 71 

D.RRA ENERGY TRANSPORT ACCURACY 74 

E. DETECTION OF VIRTUAL OBJECTS 76 

1. Mine Detection Scenario 76 

F. VISUALIZATION RESULTS 77 

G. CONCLUSIONS • ;-7S 

JX CONCLUSIONS AND RECOMMENDATIONS 81 

A. PRINCIPAL THESIS CONCLUSIONS 81 

B. SPECIFIC CONCLUSIONS 81 

1. Tactical Simulation 81 

2. Sonar Simulation 82 

3. Visualization 82 

C. RECOMMENDATIONS FOR FURTHER WORK 83 

1. Tactical Simulation 83 

2. Sonar Simulation 83 



3. Visualization 85 

APPENDIX A. RRA CODE 87 

A. BEAM. JAVA 87 

B. BOTTOM.JAVA 103 

C.LOBE.JAVA 109 

D. PPJNTVRML.JAVA 116 

E.RAY.JAVA 125 

F. SSP.JAVA 136 

G. SURFACE.JAVA 140 

H. TARGETS.JAVA 143 

APPENDKB. EXAMPLE APPLICATIONS 151 

A. EXAMPLEBEAMDYNAMICJAVA 151 

B. EXAMPLEBEAMSTATICJAVA 152 

C. EXAMPLELOBEDYNAMICJAVA 154 

D. EXAMPLELOBESTATICJAVA 156 

E. EXAMPLERAYJAVA 159 

F. PINGER.JAVA 161 

APPENDIX C. CLIENT SERVER CODE 165 

A. BATTLESCENE.JAVA 165 

B. BRJDGESERVERJAVA 174 

C. PINGSERVERJAVA 178 

APPENDIX D. TACTICAL VISUALIZATION POWER POINT SLIDE SET 183 

A. INTRODUCTION 183 

APPENDIXE. TACTICAL VISUALIZATION HTML DOCUMENTS 201 

A. INTRODUCTION 201 

XI 



APPENDKF.   RRAAPIJAVADOCDOCUMENTATION 215 

A. INTRODUCTION 215 

APPENDIX G. RRA VIDEO INFORMATION 227 

A. INTRODUCTION 227 

APPENDDCH. RRA CD ROM INFORMATION 229 

A. INTRODUCTION 229 

LIST OF REFERENCES 231 

INITIAL DISTRIBUTION LIST 233 

Xll 



ACKNOWLEDGMENT 

I would like to first thank my wife. Without her constant support and loving care of our family, none of 

this would be possible. Thanks also go to my thesis advisors Dr. Brutzman and Dr. Smith. They spent 

much time with me on this thesis, even though it was not funded. 

xin 



XIV 



I.   INTRODUCTION 

A.       OVERVIEW 

This thesis provides an interactive three-dimensional (3D) sonar propagation and rendering 

application programming interface (API) for use in virtual worlds as well as stand-alone simulation and 

visualization programs. The interactive program allows a simulation to send virtual sonar energy pulses 

into a virtual world for detection of target objects. This allows the simulation to have real-time and 

realistic sonar information from the virtual world. The stand-alone programs allow the compilation of 

data on how the sonar pulse energy interacts with the ocean environment. These programs allow the user 

to view the data as 3D virtual worlds. These worlds allow the researcher the ability to immerse himself in 

the data and develop a deeper understanding of the data set. The accuracy of this physically based sonar 

model is very comparable to other widely accepted sonar propagation models. Its accuracy is achieved by 

using the recursive ray acoustics (RRA) algorithm [Ziomek, 1996]. 

The Phoenix autonomous underwater vehicle (AUV) is a research robot at the Naval 

Postgraduate School (NPS). It is designed to navigate autonomously and perform a variety of tactical 

functions in the ocean. In order to perform complex testing without getting the robot "wet," a virtual 

world for the robot to interact with was created. This world responds to the robot's control signals, 

allowing it to navigate in the virtual world, and it provides external sensor stimulation information to the 

robot for feedback and information collection. In this type of world two models are highly important: the 

hydrodynamics and the sonar. The hydrodynamics model is a full-featured six degree-of-freedom model 

which accounts for cross body-flow. The current sonar model is a straight-line geometric model. In 

essence, the model depicts acoustic energy as traveling in a conical beam through the ocean. This sonar 

model is satisfactory for distances on the order of a few hundred meters, but for ranges on the order of 

kilometers will not provide realistic results. 



B. MOTIVATION 

Real time simulation of sonar information and visualization ofthat information are important for 

several reasons. The use of a sonar simulator for training of crews and AUVs is enhanced by physically 

based, realistic sonar information. In this instance not only must the data be realistic but it also must be 

real time. Tactical planning and visualization is another field that benefits from realistic 3D sonar 

information. If an area of ocean can be accurately simulated then more detailed plans can be made for the 

searching and controlling of that area. The ability to generate an API that can be used in these capacities 

is the motivation behind this thesis. 

C. PURPOSE 

The purpose of this thesis is to provide an application programming interface (API) for use in 

investigating the propagation of acoustic energy in shallow water regions of the ocean. This API is to 

provide a convenient and intuitive interface to the user to allow him to easily integrate physics based 

ocean acoustics into a simulation. The API will provide methods for the user to specify a virtual world of 

arbitrary complexity, propagate acoustic energy in the world, collect information on any objects 

encountered and visualize the energy as it propagates in the world The user is able to vary all aspects of 

the virtual world and of the acoustic energy pulse. 

D. ORGANIZATION 

This thesis provides all the information necessary to understand the motivation for accurate sonar 

simulations, the construction of the sonar model, the implementation of the model in Java, 3D 

visualization and the accuracy of the model compared to other generally accepted models. 

Chapter U, Related Work, provides information about the motivation for this thesis. It describes 

previous work in the fields of tactical, virtual world and sonar modeling and simulation. Chapter IE, 

Problem Statement, relays in detail the problem to be solved, possible solutions and the chosen solution. 

Chapter IV, Recursive Ray Acoustics (RRA) Derivation, describes the development of the ray acoustic 
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approximation to the linear acoustic wave equation. It develops the equations that govern the propagation 

of acoustic energy in the sonar model. Chapter V, Modeling of Recursive Ray Acoustics (RRA), describes 

each sub-model in the RRA, recursive ray acoustics, model and the methods and data required in each of 

these sub-models. Chapter VI, Sonar Visualization, provides the same information on visualization that 

Chapter V provided on RRA Chapter VH, Model Implementation and Integration, discusses the method 

and vehicle of implementation of the RRA and visualization models. Chapter VHI, Simulation Results, 

compares time, position and energy transport results from the model to other generally accepted models. 

Chapter IX, Conclusions and Recommendations, summarizes the thesis and provides information about 

improvements and extensions that can be made to the simulation. 





H. RELATED WORK 

A. INTRODUCTION 

Many past works play an important role in the development of this thesis. They are summarized 

in this chapter in order to provide the motivation and background needed by the reader. The Phoenix 

AUV virtual world is the original project motivating this thesis. The linearly geometric sonar model of 

the virtual world needs to be made more robust so that real-world results can be obtained. In the Manta 

UUV project, tactical visualization simulations show that multiple mine clearing tactics can be evaluated 

both analytically and visually to find an optimal tactic. This project also lacked a realistic sonar model 

and again provided motivation to pursue a real-time sonar simulation. The Manta UUV concept vehicle 

shows that implementation of an autonomous unmanned vehicle is seriously being considered from a 

mihtary stand point and the requirements placed on this type of vehicle helped to refine the features of the 

shallow water sound propagation model. An essential overview of acoustic modeling [Etter, 1996] 

presents the advantages and disadvantages of all types of sonar models. The model evaluation criteria 

provided in Etter [1996] show that the choice of RRA is equal to or better than all other choices, based on 

the criteria of environment complexity, range of propagation and calculation speed. Seminal work by 

Stewart demonstrates the importance of 3D visualization and the derivation of target solutions from 3D 

data via the stochastic back-projection algorithm [Stewart, 1988]. 

B. AUV VmiUAL WORLD 

1.        What It Is 

The NPS AUV virtual world, [Brutzman, 1994] was created to provide a realistic "out of the 

water" simulation environment for the Phoenix AUV. The Phoenix AUV was created at the Naval 



Postgraduate School in Monterey, California and a description of the vehicle is given in the dissertation. 

Figure 2.1 is a drawing of the Phoenix AUV. 

Dive Tracker 

Drain Plug 

GPS Antenna 

ST725 Sonar 

ST1000 Sonar 

Doppler Sonar 

Figure 2. 1 External drawing of the Phoenix AUV 

The basic idea behind virtual simulation is that every time a new change is made to the hardware 

or software of the AUV, testing of the change can be made without the time, expense and inherent danger 

of putting the vehicle in the water. The simulation models all aspects of the effects of the vehicles control 

surfaces on its position, orientation, speed and rate of change of orientation. In addition it models several 

aspects of the ocean environments effects on the AUV. For example, the effects of cross vehicle fluid flow 

are simulated. By attaching the computer in the Phoenix AUV to the computers simulating the ocean 

environment, simulated operation of the AUV in water is achieved. Previous papers [Brutzman, February 

1997] and [Brutzman, 1994], have been devoted to validating the virtual environment against actual 

operation of the AUV in the water. More information on the Phoenix AUV is found in [Brutzman, 1998]. 

2.        What Are Its Acoustic Limitations 

The original modeling of sonar detection in the virtual world simulation was rather simplistic. 

Sonar geometry of the test tank was trigonometrically derived for any posture inside the tank. This 

approach is insufficient for most applications, but for the initial abilities of the Phoenix AUV the sonar 

was acceptable. The more general model derived in [Davis, 1996] can handle arbitrarily large and 

cluttered environments. In essence the sonar propagation was just a sonar beam comprised of several 

straight-line ray segments. These ray segments were "shot" into the 3D graphics scene database which 
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comprised the virtual world and any object that they encountered was detected. Figure 2.2 shows the 

AUV in a virtual test tank, with sonar rays coming from its virtual sonar and lines of fluid flow coming 

from its cross-body thrusters and propellers. This is an accurate solution within a few hundred meters. 

Figure 2. 2 Virtual Phoenix AUV in a virtual test tank. The red lines 
are sonar rays and the green lines are water flow from the 
propellers and cross-body thrusters. [Brutzman, 1994] 

For several reasons this scheme will not work for long-range propagation. As is described in 

later chapters, sound speed in the water varies tremendously and because of this variability the rays 

undergoing long-range sound propagation do not travel in straight lines. This effect typically is noticeable 

(i.e. > 1 meter in variation) at ranges on the order of hundreds of meters. Also when distances from the 

source of the sound get large enough, the area front of the beam tube gets large. If this area starts to get 

larger than the object the sonar beam is trying to detect, missed detections occur in the numerical 

modeling. The reason for missing returns in a ray-trace model is that the rays may surround but not 

intersect the target even though the beam front might intersect. This poses a serious problem if simulated 

detections are required at ranges on the order of a kilometer or so, depending on the size of the target and 

the beam width of the sonar beam. Improved sonar modeling to cope with such scenarios is the next 



logical step for the Phoenix AUV sonar model, if Phoenix is to realize its role as an autonomous mine- 

hunting platform. 

C.       AUV TACTICAL MINEFIELD SEARCH 

1.        What It Is 

The AUV tactical minefield search program is another simulation developed by students 

working with Dr. Brutzman. The program is detailed in [Brutzman, February 1997], where the efficiency 

of nine different minefield search maneuvers is presented. In the case of clearing a mine field with a 

presupposed mine distribution, having a good idea of what search tactics produce the best results is 

essential. If an exhaustive search of the area is desired then all tactic types will produce essentially the 

same results. However, if there is a time or spatial constraint placed on the situation, not all tactics will 

produce the same results. The tactical minefield search simulation shows and analytically compares search 

effectiveness to determine optimal tactics. Though simple in form, it goes a long way toward showing that 

computer simulations can give meaningful structure to the amorphous question of which tactic is best for 

a variety of situations. Figure 2.3 shows a tactical search in progress. 

Figure 2. 3 Simulation - tactics evaluation for mine hunting. This 3D rendering allows the tactician to see the 
simulated search in progress. The search vessel is in the foreground with an oval sonar beam front 
approaching mine targets 
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2.        What Are Its limitations 

Again the limitations of this simulation apply mostly to the area of sonar detection. In this 

simulation the area to be searched is split into a two-dimensional grid of smaller areas. The areas are 

chosen so that an AUV traversing the area has a high probability of detecting a mine in the area. No 

account for sound speed profile (SSP), search depth or bottom composition was made. To get a truly 

accurate indication of efficiency of detection, these are parameters for which account must be made. For 

example, if there existed a strong surface layer and the AUV is in that surface layer, almost all of the 

energy projected by the AUV stays in the layer. Any mines that are below this layer may remain 

undetected, giving the particular search tactic a lower efficiency than indicated. 

D.       MANTA CONCEPT 

1.        What It Is 

Manta is a concept unmanned underwater vehicle (UUV) that is being examined by engineers at 

the Naval Undersea Warfere Center (NUWC) Newport, Rhode Island. The concept of operations has four 

Mantas attach to a submarine hull for transit and then detach to augment the submarine capabilities when 

in the area of operations. Figure 2.4 shows a VRML rendering of the Manta UUV. The role of this 

vehicle is still in development but may include mine detection, surveillance and prosecution of hostile 

targets. In any of these situations sonar is important for target acquisition, target tracking and navigation. 

While there exist many sonar models that are used for sonar performance evaluation and off-line 

interaction between vehicle and environment, there are few (if any) models that provide accurate real- 

time active acoustic simulation of the ocean environment. Such a capability is. very important as money to 

develop and test new concepts remains scarce.  Research time and resources can be utilized more 

efficiently if the initial mechanical, acoustical and tactical testing of the autonomous vehicle are 

performed with high fidelity in the laboratory environment. 



*m *ß»£3?5*ft 

a) 

Figure 2.4 Manta Concept Vehicle, a) is starboard beam and b) is above the forward port quarter 

2. Why Is It Important 

Since the break up of the Soviet Union, the U.S. Navy's strategic role has shifted from deep 

water operations to a shallow water littoral environment. As several conflicts in recent years have shown, 

minefields can have a devastating effect on the projection of naval power ashore as well as a devastating 

effect on the ships that encounter them. While the traditional means of mine sweeping work to a limited 

degree, in most cases a covert mapping and sweeping ability might enable rapid neutralization of a 

minefield. The Manta vehicle is the first look at an unmanned underwater vehicle (UUV) capable of 

operating in the littoral environment. While submarines can and have worked in the littoral 

environment, the potential cost both in loss of human life and monetary loss has made this option very 

undesirable.   Although a fully functioning Manta is not cheap, it is less expensive than a submarine 

because there are no operators on board. Developing such a capability is invaluable and inevitable. More 

information on Manta minefield searching is found in [Brulzman, April 1998]. 
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E. SONAR MODELING AND VISUALIZATION 

Sonar modeling attempts to recreate the highly variable ocean acoustic environment in an 

abstract form. Many different sonar models exist primarily because the real world is complex and no one 

model simplification is adequate to describe the real world in a reduced form. Sonar visualization applies 

scientific visualization techniques to the results of the sonar simulation, with the goal of enhancing the 

understanding of the interested researcher. This section identifies related work in sonar modeling and 

visualization. 

1.        Sonar Modeling 

Deciding on the proper sonar model is very important and highly dependent on how the model is to be 

used [Etter, 1996] states that no one sonar model is adequate to describe all situations and that a model 

(or combination of models) must be chosen to fit the particular set of environmental and operational 

conditions. Etter thus identifies a model hierarchy that can be used to systematically define the model to 

be used in a specific situation. Figure 2.5 shows Etter's modeling hierarchy. 

Sonar rPerfornanc 
Models 

/Signal Processing \ 

/          /     Basic Acoustic Models     \ 

System      /         Noise Reverberation \ 

öpeciTic   / 
Propagation                       \ 

/                        , Environmental Models                       \ 

/      Surface Volume Bottom          \ 

Figure 2. 5 Sonar Modeling Hierarchy [Etter, 1996] 
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The figure shows how the model proceeds from general to specific as higher and higher layers of 

abstraction are applied. The lowest level of the model deals with the specific geographic and physical 

constraints in the problem to be studied The next layer identifies the particular propagation routine used 

to transport acoustic energy through the environmental model defined on the lower level. On top of this 

layer are built models of noise and reverberation that directly integrate into the specific acoustic 

propagation model. The last layer of the overall sonar solution is the performance model, which receives 

accurate simulated sonar information from the basic acoustic model and performs signal processing on the 

data. Etter then examines many example models for each layer in the hierarchy. The number of 

permutations of this hierarchy is staggeringly large, which accounts for the relatively few attempts made 

to form a cohesive model. Some comprehensive model operating systems exist that address these issues of 

complexity and interoperability by switching among models, but they lack scalability and generality. Few 

(if any) models are computationally tractable in real time. The overall message in [Etter, 1996] is that the 

ocean is a complex acoustic environment and that models must be carefully considered to ensure realistic 

results. The implication for real-time 3D sonar modeling and visualization is that model selection is 

challenging and critically important. 

2.        Sonar Visualization 

[Stewart, 1988] presents a largely statistical approach to modeling, analyzing and visualizing 

sonar return data. His stochastic back-projection technique adaptively forms a visual model of the world 

from inherently noisy sonar information. This sonar data is characterized as high bandwidth, high noise 

and highly redundant. It is redundant in the fact that many propagation paths are available for acoustic 

energy in the ocean environment. The particular advantage of this model is that immediate results are 

always available and that the accuracy of the visualization increases as time progresses. 

Extensive research in the area of sonar visualization shows that a lack of other resources are 

available. As evidence of this statement, a five year literature search of the Acoustical Society of America 

Journal (JASA), IEEE Transactions on Visualization and Computer Graphics, and most published books 
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on scientific visualization revealed only a handful of diagrams rendered in 3D. It is proposed that real- 

time 3D sonar visualization is an important new field of study lacking computational foundation. 

F.        SUMMARY 

This chapter reviewed the work related to the design of a shallow water sonar propagation and 

visualization model. Several current virtual world simulations and tactical simulations were presented, as 

well as two systematic approaches to sonar and visualization modeling. For those interested in tactical 

search evaluation, Appendix D and Appendix E contain an annotated slide set and HTML pages on 

tactical visualization using the Manta UUV. Specific faults of various models were addressed and a 

strategy for addressing these faults was presented. In particular [Etter, 1996] describes a systematic 

technique for the development of an accurate and realistic sonar model. Finally, real-time 3D sonar 

visualization is proposed as an important new field of study. 
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HI. PROBLEM STATEMENT 

A. INTRODUCTION 

Chapter H, Related Work, showed that there are several programs and simulations in existence 

that have limited or no realistic sonar modeling. When a virtual world is created to mimic the real world, 

an account of all of the important physical parameters must be made. Performing an underwater acoustic 

simulation with an unrealistic acoustic model ensures unrealistic results. 

B. PROPOSED FRAMEWORK 

A sonar model that has its origins in the physics of underwater acoustics is necessary for any 

high-resolution virtual world simulation of the real world. AU of the parameters vital to underwater 

sound propagation must be included: bottom type, water column sound speed profile (SSP) and surface 

interactions. Due to the complexity of acoustic energy propagation in real-world underwater 

environments, the sonar model solution must possess robust visualization capabilities as well as the ability 

to deliver the vast amount of information in the simulation to an outside client. The sonar model needs to 

be realistic in energy transfer through the water and must also provide real-time response for user 

visualization and robot interaction. 

C. FACTORS AFFECTING THE SOLUTION 

The problem at hand is to generate a real-time, three-dimensional (3D) acoustic energy 

propagation simulation. This is in response to the need for autonomous underwater vehicles that can 

perform tactical operations in the underwater environment. This environment is highly complicated, and 

therefore acoustic simulation in other than a physically rigorous manner is of little use. Additionally, due 

to the complexity of the real-world environment, it is desirable to build realistic physics-based virtual 

worlds. Why is a virtual world desirable? The development of a virtual world provides many features. 
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First, visualization of the acoustic energy propagation in a spatially oriented manner becomes possible. 

Second, since the scene can be animated visualization of the time-dependent nature of the acoustic wave 

front can be seen as it develops in both time and space. Lastly, when the sonar model is allowed to run in 

an interactive mode as a server to some client program, then more complex real-world simulations can be 

created. In this last form, the ability to enhance the Phoenix AUV virtual world and the AUV search 

tactics evaluation simulation programs results in data that is more consistent with the real world and its 

processes. However, physics-based real-time solutions to any wave-energy propagation model requires 

sufficient computing power. Surprisingly, adequate computational power can be provided by currently 

available personal computers to give the amount of resolution required for sufficiently accurate results. To 

increase the computational power further, either throughput in an individual processor needs to be 

increased or the number of processors working on the job needs to be increased Both of these options are 

viable and need to be explored Increasing throughput is a job being handled quite well by microprocessor 

manufacturers, so no further discussion is warranted here. Increasing the number of processors falls into 

one of two categories: building a massively parallel computer or interconnecting many individual 

computers via a high speed local-area network (LAN). For most researchers, the second option may 

already exist or can be created relatively easily. With the real-time 3D sonar visualization problem well 

defined how is the solution to be obtained? 

D.       POSSIBLE SOLUTIONS 

This section addresses many possible ways of solving the problem. Several different sonar 

propagation models exist, such as ray tracing, normal mode, parabolic equation and others. In addition 

many different ways of simulation exist; direct analog simulation and digital computer simulation are but 

two of the many ways to simulate a physical process. Once the specifics of the implementation are worked 

out, what to produce as the results of the simulation must be decided. In other words, what useful function 

does the simulation provide that was not available before implementation. These aspects and others are 

explored in this section. 
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1.        Available Sonar Models 

Deciding on the proper sonar model is very important and very dependent on how the model is to 

be used. [Etter, 1996] Chapter 4 is devoted to explaining the advantages and disadvantages of the 

common sonar-propagation models. The chapter presents ray models, normal mode models, multipath 

expansion models and parabolic equation models. A short description of each of the model types is given 

in the following paragraphs. 

Ray theory models start with the Heimholte equation and make the assumption that a 

propagating wave can be thought of as a surface of constant phase emerging from a source. This surface, 

called the eikonal, can be represented by rays that travel perpendicular to the surface of the wave front. 

The direction of travel of these rays depends completely on the initial direction of travel and the sound 

speed profile (SSP) in the water column. Ray theory requires that the frequency of the acoustic signal be 

large compared to the rate of change of sound speed in the water column and that the wavelength be small 

compared to the characteristic length of structures on the ocean surface and bottom. [Etter, 1996] 

develops Equation (3.1), 

f>\QclH, (3.1) 

where f is the minimum accurate frequency, c is the speed of sound in the ocean and H is the depth of the 

ocean. This gives a good rule of thumb for the low limit of the accuracy of the ray-tracing algorithm. 

Another important characteristic of a sonar modeling theory is that of range dependence. Ray theory 

models are generally range-dependent models. This means that the acoustic structure of the ocean can 

vary with distance from the source in a 2D or 3D manner. 

Normal mode methods are derived from an integral representation of the linear acoustic wave 

equation. To arrive at practical solutions, cylindrical symmetry is assumed which limits range 

dependence to two dimensions. This equation is then solved using separation of variables. This technique 

develops a solution that depicts acoustic waves as traveling waves in the horizontal direction and standing 

waves in the vertical. Many times in order to develop a closed form solution to the normal mode problem, 
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no dependence is placed on range, this is termed range independence. For many shallow water regions, 

especially near shelf break zones, range independence is an invalid assumption. 

Multipath expansion methods expand the acoustic field integral representation into an infinite 

orthogonal set of integrals. This sounds like a bad idea; to go from one integral to an infinite set of 

integrals. However, each integral is simpler than the original and with the proper approximations only a 

certain number are used in the final solution. By integrating only a limited number of integrals, an angle- 

limited source model is produced. This solution technique has many similarities to ray theory, but is 

better suited to deep water. One advantage over ray theory is that caustic and shadow zones are properly 

computed, instead of incorrectly producing infinite pressure fields as ray theory can. 

Parabolic equation methods find their roots in the 1940's when it was first applied to long-range 

radio propagation. The first application to acoustic waves is in [Hardin and Tappert, 1973]. The basic 

theory is to make an approximation that there is little back scattering of acoustic energy in the water 

column. This approximation transforms the elliptic wave equation into the parabolic wave equation. 

From the form of the parabolic wave equation, many other assumptions about symmetry and sound speed 

profile can be made to simplify the mathematics. Several different numerical integration techniques are 

then used to evaluate the parabolic equation form of the wave equation. Two of the most popular are the 

split-step Fourier algorithm and the finite-element method. The split-step Fourier method has the distinct 

advantage of speed of computation, while the finite-element technique is typically more accurate at higher 

propagation angles. 

[Etter, 1996] provides a table that summarizes the applicability and practicability of each of the 

models in relation to water depth, source frequency and environmental dependence on range. A summary 

of the table from the book is presented in Figure 3.1. As was described earlier, the focus of this model and 

simulation is for the shallow water environment and so the deep-water portion of the figure was left off. 

Therefore, the two independent variables in this table are frequency and range dependence. A range- 

dependent environment has fundamental characteristics that change as the distance from the source 

varies, whereas a range-independent environment does not. Given that the goal is to develop a shallow- 
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water sonar model that is robust in a range-dependent environment and which works well with a 

frequency in the 1000 Hz range and higher, then Figure 3.1 indicates that a ray-theory model is best 

suited. If however the frequencies of interest are below 500 Hz and range dependence is required, the 

parabolic equation model is best. 

Model Type 

Applications 

Shallow Water 

Low Freq. High Freq. 

Rl RD Rl RD 

Ray Theory O o 0 • 
Normal Mode • 0 • 0 
Multipath o O 0 o 
Fast Field • O • o 
Parabolic Eq. 0 • o o 

Low Freq. - < 500 Hz 
High Freq - > 500 Hz 

Rl - Range Independent 
RD- Range Dependent 

0 Applicable and Practical 

(J) Limitations in Accuracy or Speed 

O Neither Applicable or Practical 

Figure 3.1 Applicability and practicability of model types, adapted from [Etter, 1996] 

Of particular note is a paper published in the Journal of the Acoustical Society of America, 

[Smith et al., 1991], which states that due to sensitive dependence on initial conditions, ray-theory 

solutions tend to exhibit chaotic behavior. The paper goes further to show that the chaotic behavior 

begins to become apparent somewhere around 100 km from the source in deep ocean environments with 

no boundary interactions. Chaotic behavior for most shallow-water environments will occur at shorter 

ranges due to extensive ocean bottom interaction. For this reason, care must be taken in evaluating the 

results of complex tactical shallow-water environments. 

2.        Type Of Simulation 

Choosing the type of simulation is important to any modeling problem. To simulate a shallow 

water environment one might use a physical simulation or an abstract simulation. An example of a 

physical simulation of a shallow-water environment is to construct a tank of water with a scaled version of 
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the environment to be studied. An example of an abstract simulation is a computer simulation of a sonar 

computational model, where the actual simulation is occurring as a bunch of electrons flowing through 

computer chips. Each method of simulation has its own advantages and disadvantages. The physical 

simulation has the advantage of being closely linked to reality, providing that proper scaling and 

terminating techniques are used However physical simulations require massive amounts of material and 

time reconfiguring for a new environment. Abstract simulations are just the opposite in that they are 

further removed from reality even when the initial and boundary conditions are specified properly, but 

they are easily reconfigured for different environments by changing the initial and boundary conditions. 

3. Networking Considerations 

The choice here is to opt for or against network interaction. Networked simulations have a 

distinct advantage over single-computer simulations. Networked simulations can be made more widely 

available and can as a result have more computers working on a given problem. In large-scale 

simulations this increased computing power and ease of access allow the formation of multiple participant 

simulations. The advantage here is that the simulation is closer to reality and any simulation that is closer 

to the real world progression of a system is a better simulation. However, networked models must also 

pay performance penalties associated with bandwidth capacity, message delivery latency and 

synchronization overhead costs. The decision to network or not is primarily a function of whether or not 

computing power needs to be increased or if interaction with distant parties is desired. 

4. Visualization 

The options for visualization range far and wide. Output options include text-based tables, two- 

dimensional graphs and three-dimensional virtual worlds. The first two options are modest and well 

within the capabilities of most computer software that is available. The third option requires specialized 

rendering software. This software comes in many forms, such as stand-alone programs that read in 

textual tables and generate information, interactive programs that are directly called from the simulation, 
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or a combination of the two as can be found in common virtual reality (VR) browsers. Each form has its 

distinct advantages and disadvantages. One recent advantage, that stands out, is provided by VR 

browsers: widespread availability of a common standard for 3D graphics representation, using the Virtual 

Reality Modeling Language (VRML 97). This compatibility supports the needs of large-scale simulations 

presented in the previous section. 

E.       SUMMARY 

Implementation considerations for a shallow water sonar propagation and visualization 

simulation are many. Proper choices for propagation model, simulation type, networking and 

visualization must be made. The remainder of this thesis discusses and develops these important choices 

in detail. 
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IV.  RECURSIVE RAY ACOUSTICS (RRA) DERIVATION 

A. INTRODUCTION 

This chapter is included as a benefit to the reader interested in the mathematical derivation of the 

Recursive Ray Acoustics (RRA) equations. The nomenclature used is similar to [Ziomek, 1996] and each 

equation in the stated derivation comes from Chapter 5 of that text book. The flow of the mathematical 

development presented here is straight to the point. Some of the more difficult (and long) tangential 

derivations are left for the reader to explore in Ziomek's text. Although this derivation is streamlined, it 

is a complete and rigorous treatment of the transformation of the linear acoustic wave equation into a 

linear ray acoustic equation. 

B. THE DD7FERENTIAL EQUATION 

[Ziomek, 1996] Chapter 5 is devoted to solving the linear acoustic wave equation using ray 

theory simplifications. This section derives the pertinent equations of ray acoustics. The first assumption 

is that the acoustic source is a time-harmonic oscillator. When this is the case, the starting point of the 

derivation is the Heimholte equation: 

V>(r)+i0
2fl2(r)^(r)=0. (4.1) 

The acoustic pressure is then assumed to have the simple geometrical form which locally appears as a 

plane wave front of amplitude a(r), as in: 

<p(r)=a(r)e-ß^lr). (4.2) 

The function W(r) defines a surface of constant phase and typically is called the eikonal, which means 

image in Greek Upon substituting Equation (4.2) into Equation (4.1) and simplifying, the following 

equation is obtained: 

[v2 + kl [n1 (r) -1W(r)|2 ]Wr) - jk0[a(r)V2W(r) + 2Va(r) • WW(r)] = 0.   (4.3) 
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Now since the left hand side of the equation is identically zero, both the real and imaginary parts of 

Equation (4.3) must be zero. This provides two equations: 

V2a(r) + A:0
2[K2(r)-|V^(r)|2]a(r) = 0 (4.4) 

and 

a(r)V2W(r) + 2Va(r) • VW(r) = 0. (4.5) 

Equation (4.4) is the equation that tells how the wave front of the acoustic signal travels through the water 

and Equation (4.5) describes the flow of energy of the acoustic signal. Equation (4.4) is now the focus of 

the following development. 

Rearranging this equation yields an alternate form: 

1 + 
1 

*,V(r) 
V2fl(r) 

a(r) 
-k2

0\VW(rf = 0. (4.6) 

From this form if it is assumed that the amplitude function of Equation (4.2) varies much more 

slowly than the phase function, then 

V2a(r) 
a(r) 

«k2
0\WW(r)\ (4.7) 

is true and Equation (4.6) reduces to 

|W(r)|2 =n2(r) , (4.8) 

the eikonal equation. As a direct result of the assumption in Equation (4.7) Ziomek shows in his book 

that 

V2a(r) 

*(r) 
« k2(r) = 

2nf 

c(r). 
(4.9) 

and also indicates that the approximation amounts to a high-frequency approximation. 

From vector mathematics it is known that the gradient of the eikonal is 
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.23 A .23 A J3 A 

VFT(r)= —ff(r)x+—JT(r).)/+—JF(r)z 
<7x <7y ^ 

(4.10) 

Since it is a vector it can be expressed as a magnitude and a direction, 

VW(r) = \VW(r)\s\r), (4.11) 

where s(r) defines the local direction of the ray path. This can be rewritten, using Equation (4.8), as 

A 

W(r) = «(r)s(r), (4.12) 

where n(r) is the index of refraction. To further clarify Equation (4.12) a ray is defined to be a path 

perpendicular to the phase fronts at a given position, as in Figure 4.1. 

Phase 
Front 

Figure 4.1 Ray Definition 

From this graphic it is easy to see that the following equation is true: 

dx *0) 
d s 

dx   A      dy   A       dz  A 

— *+ -T— y + —z , 
os os os 

(4.13) 

since |dr| = ds. Equation 4.13 is the unit vector in the direction of Equation (4.10). Computing the 

directional derivative of W(r) and using the chain rule yields the change in phase along the ray path, 

d       ,  x       d       ,  ^ dx       d „ ,  ^ dy       6 m ,  ^dz 

8s dx os      oy ds      oz ds 

From inspection of Equations (4.10) and'(4.13), it can be seen that 

25 



—W(r) = VW(r)»s(r) (4.15) 
es 

is equivalent to (4.14). Substitution of (4.12) into this result produces 

—W{r)=n{r). (4.16) 
OS 

This equation can be integrated quite easily to yield the solution of the eikonal equation. In 

essence the equation says that a small change in the wave front can be generated from the product of the 

index of refraction and a small change in the path length of a ray traveling normal to the front. 

C.       THE DIFFERENCE EQUATION 

To develop this equation into a form better suited for calculation on a digital computer and to 

solve for a more meaningful physical quantity, the gradient operator is applied to Equation (4.16) to yield 

V 4rW (j)= V«(r). (4.17) 
ds 

Since the two operators preceding W(r) commute, Equation (4.17) can be rewritten as, 

4-VW(r)= Vw(r). (4.18) 
OS 

Equation (4.12) is then substituted into Equation (4.18) yielding, 

^-(»(r)i(r)) = V/i(r), (4.19) 

which can be rewritten as a difference equation, 

A(»(r)5(r)) = V»(r)A*, (4.20) 

instead of a differential equation. If the path length step As is kept small, then the path can be considered 

a straight line, and Equation (4.20) can be rewritten again as, 

»(rf)i(rr)-n(r.)i(r.)= V«(r)(rr - rc) (4.21) 
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Substitution of, 

n(r) = ~T\, (422) 
c(r) 

and solving for the normal vector to the wave front at the final position yields, 

*(rr) = kr)jj^~ (rf - rJc(rt)^yrjV c(r') ,     (4.23) 

where c(r*) is the average of the sound speed at the final and initial points. 

This is the final form of the solution and is referred to as the recursive solution, since to get the 

final solution the previous step must be solved recursively all the way back to the starting position. The 

recursive technique is relatively simple in that, if one starts with a normal to the wave front and takes 

small-path-length steps, calculating a new normal at each step, the solution can be achieved It is this 

difference equation that is implemented in the RRA code of this thesis. 

D.   SOLUTION TO THE TRANSPORT EQUATION 

Equation (4.5) is now addressed to discover how the acoustic energy is transferred (i.e. 

transported) with the ray.    The first step is to multiply the equation by a(r) which yields, 

a2 (r) V2 W(r) + 2a(r)Va(r) • VW(r) = V • [a2 (r) V W(rj\ = 0.      (4.24) 

Calculating the time averaged intensity vector of, 

<p(t,r) = <p(r)eJ2'!ft, (4.25) 

where cp(r) is Equation (4.2), the following average intensity is arrived at; 

I^(r) = \k2p0(r)c0a
2(r)VW(r) . (4.26) 

[Ziomek, 1996], Chapter 5, page 336 shows the development of the time-averaged intensity vector in 

detail. When Equation (4.26) is substituted into Equation (4.24), the result is, 
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I«», avg 

AW 
= 0. (4.27) 

Now suppose that instead of a considering single ray proceeding along a path, a bundle of rays 

such as Figure 4.2 exists. When Equation (4.27) is integrated over the volume defined in the figure and 

the divergence theorem is applied, 

Figure 4.2. (a)Rays forming the bundle, (b) Surfaces enclosing the bundle    [Ziomek, 1996] 

I^v» fv.  lavsyr)/ ( ,dV = { I«», avg 

Po(r) 
• dS = 0. (4.28) 

is the result. The integral over the surface S3, in Figure 4.2, is assumed to be zero since the rays 

themselves form the surface and by definition cannot leave the surface. Therefore, it is easily seen that the 

integral over the three surfaces result in showing that all of the energy stays in the bundle and as such the 

energy in the bundle crossing any plane is a constant. In equation form this concept is written as, 

I*yg(rt)Si/,    .=
I°vAr*)Sy,    x (4.29) 

/M«-I)        /PA^Y 

where the S's are the surface areas perpendicular to the ray bundle and the p's are the density at the two 

different positions. This equation allows the calculation of the intensity of the bundle at any position 

along its path, at any time. It is important to note that no summations of incremental intensity variations 
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along the path are necessary, only the knowledge of the values of three of the four quantities allow 

calculation of the other at any two positions in the water column. 

E.       SUMMARY 

As can be seen from the preceding derivation, the Recursive Ray Acoustic (RRA) approximation 

is straight forward. The particularly fascinating outcome of this entire chapter is that when any acoustic 

wave meets the assumptions made in the mathematical development, the wave can be completely 

described by just two simple Equations, (4.23) and (4.29). These correspond directly to Equation (3) in 

[Ziomek, 1993] and Equation (5.2-170) in [Ziomek, 1996]. Thus the RRA formulations appear to be both 

very general and computationally efficient. These attributes make the RRA model an excellent (and 

perhaps optimal) choice as a computational engine for real-time 3D sonar beam generation 
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V. MODELING OF RECURSIVE RAY ACOUSTICS (RRA) 

A. INTRODUCTION 

This chapter extends the recursive ray acoustics (RRA) algorithm into a complete model suitable 

for real-time simulation and 3D sonar visualization. The full set of equations that define the RRA model 

are stated and elaborated upon. Each sub-model of the RRA (sonar server) model is explained from a 

modeling perspective. The composition of the state vectors and operations for each sub-model are defined 

and the mathematical developments for curvature determination, reflection detection and target detection 

are given. This chapter lays out the formal structure of the RRA model, which is further described in 

Chapter VII, Model Implementation and Integration. 

B. MODEL ENGINEERING 

At the outset, the difference between the term 'model' and the term 'simulation' needs to be 

defined. A model is the abstract representation of the dynamic system in question. Simulation simply 

refers to a the performance of a model over time. Implementation of the model can predict the dynamic 

characteristics of the system, from which we gain insight about the original model. It is quite clear from 

the definitions that the formulation of a model must precede the development of a simulation. Therefore, 

before one can jump into the mechanics of programming the entire model into a simulation, model 

engineering must be carefully considered before a single line of code is written. Fishwick states, 

How do we engineer models? While there are many modeling techniques for simulation, we are 
often in a quandary as to which model technique to use and under what conditions we should use 
it. First start with a concept model of whatever dynamic system is being investigated. Break the 
system into a hierarchy of abstractions and then choose models to represent those abstraction 
levels. The final solution to a model will be a multi-model of the system since no one model type 
will be sufficient to describe a system except in only the most elementary circumstances. 
[Fishwick, 1995] (page 5) 
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Figure 5.1 shows the top-level architecture of the shallow-water sonar model. The sonar server 

model is considered in this chapter, the sonar visualization model is considered in Chapter VI and the 

virtual world display model is considered in Chapter VII. 

Recursive Ray 
Acoustics 

Shallow Water 
Sonar Model 

Sonar Server 
Model 

Visualization 
Model 

ZL 
Virtual World 
Display Model 

Figure 5.1 Shallow-water RRA sonar model architecture 

The sonar server model is further decomposed into the hierarchy of models depicted in Figure 5.2. As an 

overview, the base models in this hierarchy are the target model, the ray model, the ocean bottom model, 

the ocean surface model and the sound speed profile model. From the ray model the beam model is 

derived and from the beam model the lobe model is derived. Each sub-model and its implementation in 

the simulation is discussed in detail in the following sections. Figure 5.3 shows the relationship among 

rays, beams and lobes. 

Sonar Server 
Model 

Target Model 
T 

Lobe Model Bottom Model Surface Model 
1 

Sound Speed 
Profile Model 

Beam Model 

Ray Model 

Figure 5.2 Sonar Server Class Hierarchy 
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a) b) c) 

Figure 5. 3  a) A single ray, b) Four rays forming a beam and c) Twenty beams forming a lobe 

C.        THE COMPLETE RRA EQUATIONS 

Before further elaboration on sub-model design and implementation, it is necessary to revisit the 

ray theory solution to the wave equation. Equation (4.23) is the central equation in the algorithm 

intended for eventual implementation. [Ziomek,1996] shows the final form of the equations in a finite 

difference format vice the differential format. The equations are restated with minor variations from the 

originals for ease of understanding. 

i-=!•_,+Ar.^ (5.1) 

Si   —   Sj-i 
<(r.) 'fä-''A*.)^**;-.y 

.      r,-i+r,. 

(5.2) 

(5.3) 

(5.4) 

where the unit normal vector S is the same as Equation (4.13) and i = 1,2,3,... Since most real-world rays 

are represented as an elevation and an azimuth angle, a coordinate system conversion must be made. 

These conversions are summarized in the following equations, 

dx 
ds 

sin (/? ) cos(^ ) , (5.5) 
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dy_ 
ds 

=   COs(/? ) , (5.6) 

and 

dz 

ds 
sin(/? )sin (^ ) , (5.7) 

where ß is the elevation angle and <(► is the azimuth angle relative to the initial ray position, as shown in 

Figure 5.4. 

Z - cross range 

> X - down range 

Figure 5.4 Ziomek coordinate system definition of ß and <fr. ß is measured from the y-axis and <(• 
is in the x-z plane 

Equations (5.5)-(5.6) assume the model uses the coordinate system of Figure 5.4, referred to as the 

Ziomek coordinate system to distinguish it from systems used later. Figure 5.5 shows the Ziomek 

coordinate system and the traditional naval coordinate system. Using the preceding equations and 

conventions specified it is now possible to unambiguously specify each sub-model of the RRA model. 
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->X Y 

\l/ 
z 

Y 

Figure 5. 5 Ziomek and Naval coordinate systems 

D.       RAY MODEL 

With the construction of any model, one must first work out what data is important and limit the 

model to produce just this set of information. While the ability to calculate every foreseeable parameter 

hypothetically might be desirable, the reality of having to implement a practical model to such a level of 

detail proves difficult. In general, with an excessive level of detail, the time taken to run the simulation 

and collect the data increases dramatically. Therefore, what parameters must be modeled in the case of a 

sound wave traversing an ocean environment? To adequately describe the state of the model, and how it 

transitions from one state to the next, the designer must clearly state what the desired output of the model 

is. As seen in the previous chapter, a wave front traveling through the ocean can be thought of as a 

collection of sound rays traveling through the water. It is just these rays that are considered in this 

model. 

From the ray model the information that is available at each time step includes position, duration, 

direction of propagation, phase, time, total distance traveled, and total attenuation of the ray. In an ideal 

case, all information at every step of the calculation might be recorded, but for a single ray this can add up 

to megabytes of data. Obviously, this is not practical due to the excessive disk access and computational 

overhead involved in keeping that amount of data. Instead the model only keeps the amount of data 

necessary to visualize accurately what is developing in the model. Since a ray traces out a curved line in 

the ocean with occasional abrupt changes in direction at reflections, the model needs to retain enough 
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points to faithfully represent the ray curvature, especially for neighboring points in the vicinity of an 

abrupt change in direction of the ray. Therefore, in addition to the required output information, local 

curvature and reflection information must be kept. Thus the state vector of the ray model must include the 

position of the leading edge of the ray segment, position of the trailing edge of the ray segment, direction 

that the ray segment is traveling, simulation time, phase of the ray at the wave front, total distance 

traveled, and total attenuation. With the state vector now defined, the operations on this vector must be 

defined to enable the state vector to change in time. The desired operations needed are to initialize, 

propagate, reflect, calculate attenuation, calculate total curvature, save the current state and print any 

required state of the ray. Some of these operations are self-explanatory while others (propagation, 

reflection, attenuation calculation and curvature calculations) require more discussion. The reflection 

operation is discussed as part of the surface and bottom models later in this chapter. State vector 

parameters and operations for the ray model are enumerated in Figure 5.6 

Ray Model 

State Vector Operations 

Position 
Trailing Edge Position 

Propagation Direction 

Simulation Time 

Phase 
Attenuation 

Curvature 

Set Any Parameter 
Get Any Parameter 
Propagate 
Reflect 

Calculate Attenuation 

Calculate Curvature 

Save State 
Print State 

Figure 5.6 Ray model state vector and required operations summary 

The propagation of a ray first requires implementation of Equations (5.1)-(5.4). Equations (5.5)- 

(5.7) are used to initialize the unit normal vector to the wave front, and find no further use during the 

propagation of the ray. Starting with a given state vector, propagation involves applying Equations (5.1) - 

(5.4) (in reverse order) for every given change in path length. In order to keep the simulation time 
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between rays the same, the incremental path length, Ar, in any given time step, At, is calculated as 

follows, 

Ar = At   c(r*). (5.8) 

This substitution allows for stepping in regular discrete time intervals to calculate changes in the state 

vector. 

Attenuation of sound in sea water has been extensively studied and is due to many physical 

phenomena occurring simultaneously in various parts of the ocean. Relaxation processes and scattering of 

energy from resonant micro-bubbles [Clay and Medwin, 1977] are but a few of the loss mechanisms in the 

ocean volume. This model is concerned solely with the relaxation process, which occurs when a passing 

sound wave interacts with a media in a non-adiabatic fashion. In other words a net transfer of energy 

from the sound wave to molecules in the water has occurred, which results in an attenuation of energy in 

the wave. In Chapter 7 of [Kursier et al., 1982] sound attenuation due to relaxation processes in sea 

water are shown empirically to follow Figure 5.7. Since the value of the attenuation changes with 

temperature and pressure, those effects must be taken into account during every time step of the 

propagation. Therefore a simple summation of the product of the change in path length and the local 

value of the attenuation coefficient must be made. The formula for calculating the attenuation coefficient 

is complex and requires excessive processing time so an approximation is made. At the frequency of most 

active sonar systems (less than lOOKHz), the attenuation coefficient is fairly negligible for all temperature 

and pressure conditions, thus a representative value is chosen from the range of possible values. This 

value is the attenuation coefficient as read from Figure 5.7. A more detailed discussion of attenuation and 

the relaxation attenuation coefficient is found in [Kinsler et al., 1982]. 
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Figure 5. 7 Attenuation coefficient in sea water [Kinsler et al., 1982] 

Curvature calculation for the ray is based on storage efficiency and the aesthetic appearance of 

visualizing the ray. As stated before, it is important to minimize the amount of information one carries 

along in a simulation. In the case of visualizing sound waves in the ocean, only the number of points 

necessary to make the ray appear smooth when seen from a distance must be saved for later use. The trick 

then is to calculate the cumulative radius of curvature of the ray and when it reaches a predefined small 

value, a detailed vector of state data is saved and the cumulative curvature is reset to zero. The 

development of this simple curvature relationship is presented in the rest of the section. In Figure 5.8, the 

left-hand graphic shows two ray segments laid head to tail, as they are when the ray propagates. The 

right-hand graphic shows the angular difference between the two ray segments. 
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Figure 5. 8 Successive segments in the ray path 

These vectors represent two successive steps in the tracing of a ray. If the vectors are rearranged as in the 

right-hand graphic in the figure, it is easily seen that 

A$ = 
|Ar| |Ar| 

kl 
r — r 1 2     M| 

|r| 

A              A 

|r|s2-Si A                A 

S2-S1 kl W (5.9a) 

where |r| = |rl| = |r2| when the constant time step is small and there are no abrupt changes in direction of 

propagation. In Equation (5.3), the values of cfo), c(r2) and c(r*) are assumed to be equal, provided that 

At is small, therefore they disappear from Equation (5.3). Then Equations (5.3) and (5.8) are substituted 

into Equation 5.9a, yielding 

A0 = «! + Afflc - Si = ArVd (5.9b) 

It is also apparent that if the second normal does not change much from the first normal as the ray 

propagates, and the path length of each ray is small and nearly equal, then the distance from the mid- 

point of the first vector to the second is equal to the arc length of one of the rays, 

As = Ar-c(r). (5.10) 

Curvature then can be defined as the amount of angular change per amount of change in distance traveled. 

Thus Equations (5.9b) and (5.10) can be combined to arrive at 

A0    |ArVc|    |Vc| 
K == [curvature] - 

As     tsi-c 
(5.11) 
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which shows that for small changes in ray position with small changes in direction, the increment in 

curvature can be defined completely in terms of the sound speed profile of the medium. Since it is already 

necessary to take small step sizes and there are no abrupt changes in sound speed in the water column, 

this approximation is satisfactory. The next task is to then find the limit to which the cumulative 

curvature is to be taken before the ray state vector is recorded. This tends to be a matter of preference as 

to how smooth one wants the curve and how much overhead is desired. Evaluating visual renderings 

through a series of empirical measurements, a value of .004 radians/meter gave good results of curvature 

versus overhead. Now that the state vector and the processes to change the state vector in time are known, 

the ray tracing model is ready for simulation. This simulation is described in Chapter VII. 

E.       BEAM MODEL 

The beam model is similar to the ray model in that it is just one level of abstraction away from 

the specifics of how rays are calculated. In other words, the beam model composes multiple ray models. 

The state vector for a beam is that of a composition of four matched rays which form a quadrilateral ray 

bundle. The only fields added to the state vector that have not been previously discussed are transmission 

loss, detect time and echo level. The transmission loss part of the state vector is used to define the 

logarithmic change in the intensity of the energy contained within the ray bundle, while the detect time 

and echo level parameters are used to document the time and intensity of a target detection. These new 

fields and operations are fisted in Figure 5.9. 

The methods needed to change the beam state vector over time and to produce usable output are 

thus extensions of some of the methods developed for the individual rays. These methods are 

initialization, propagation, calculation of transmission loss and echo level, and production of usable 

output. 
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Calculate Echo Level 
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Figure 5. 9 Beam model state vector and required operations summary 

Initialization and propagation are just extensions of the ray model initialization and propagation 

methods; these methods perform the initialization and propagation methods on each of the four rays in 

the beam state vector. The visualization methods are used to generate abstract visualizations of the data 

stored in the beam's state vector. The explanation of the visualization model is provided in Chapter VI. 

The only methods remaining are those of calculating the transmission loss of the bundle of rays and the 

echo level of the target. Since the echo level is determined from the transmission loss, the transmission 

loss is discussed first. 

In order to calculate the transmission loss of the ray bundle, it is essential that the ray segments 

are synchronized in time. As shown in Equation (4.29), given knowledge of the initial intensity, initial 

area and final area, the value of the intensity of the acoustic signal in the ray bundle can be calculated. 

This allows direct calculation of the transmission loss which is, 

TL = 101og10 
4*(r2) JM lOlog 10 \S2J 

(5.12) 

where the areas, Si and S2, are the same as in Equation (4.29). The values of the initial intensity and the 

initial area can be known from the sound source, while the value of the final area must be calculated for 

each spatial position of interest. 
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The method of calculating an approximation to the area of the ray bundle is to divide the 

quadrilateral beam front into two triangles. The area of these two triangles are then added together as the 

total area. The question is, how is an area calculated when all that is known is the positions of the four 

corners of the area? The straightforward solution is to use vector algebra to find the area. Figure 5.10 a) 

shows a quadrilateral formed by four points in space.  These points are not necessarily coplanar, so they 

are divided into two triangles that are guaranteed to be coplanar. Figure 5.10 b) and c) show the two 

triangles as being transformed into parallelograms. Vector VI is crossed into vector V2, which gives the 

vector whose length is equal in magnitude to the area of a parallelogram defined by VI and V2. This 

value is then halved to form the area of triangle Tl. The area of triangle T2 is found in the same manner 

as that of Tl using vectors V3 and V4. It is noted that the area of a parallelogram being equal to the 

magnitude of the cross product of the vectors defined by two adjacent sides is a fundamental property of 

the parallelogram. 

V4 

V1 """" 

a) 

b) c) 

Figure 5. 10 Division of beam front into triangles for area calculation, a) beam front b) triangle 
Tl transformed into a parallelogram c) triangle T2 transformed into a 
parallelogram 

The echo level, EL, is defined as 

EL = SL -2TL + TS, (5.13) 
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where SL is the source level and TS is the target strength. For this model, the users calling program 

keeps track of the SL. Thus, the model calculates EL-SL. The target strength as found in Figure 15.51 

from [Kinsler et al., 1982} is, 

ZS = 101og[ 7 . (5.14) 

Where the symbol 'a' is defined to be the acoustic cross-section of the target. 

Again it is shown that the beam model propagation of sound in the water column is defined by 

the RRA model plus the addition of three simple equations, Equation (5.12), (5.13) and (5.14).   Here the 

power of ray tracing begins to show, through the simplicity and ease of calculation of pertinent 

parameters. Simple calculations provide both reduced simulation time and the ability to propagate more 

rays in real time. 

F. LOBE MODEL 

This model is the simplest by far. The lobe model merely composes several beams. A lobe is 

defined as a horizontal and vertical beam width and a horizontal and vertical count of the beams in each 

width. Thus the state vector of a lobe consists of a matrix of beams. This matrix of beams determines the 

accuracy of the simulation. Since ray tracing is a space-time accurate algorithm, the number of beams 

calculated has no bearing on position and time accuracy. When the number of beams is increased, the 

size of the area of the tube bundles is kept small and proper interference patterns can be maintained. 

Minimization of beam front area is also important for reflection purposes. As the beam gets larger the 

individual beams that comprise it get farther apart. The beams can, if large enough, strike a surface at 

significantly different times or can even strike completely different surfaces. The current reflection and 

detection models do not account for the size of the beam fronts and thus drastic errors can be introduced 

into the simulation if beam front sizes are not maintained small. The operations that can be performed on 

a lobe are initialization, resetting, calculating and printing. All of these operations are self evident in that 
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they will rely upon the same type of operations in the beam sub-model to perform their operations. Each 

operation will call the sub-model operation for each beam in the lobe. The initialization and resetting 

operations also perform an energy distribution function. Each beam receives a fraction of the energy of 

the lobe in accordance to the position of the beam in the lobe. In this model all beams receive the exact 

same energy, but this can be changed to any energy distribution pattern desired Figure 5.11 shows the 

fields and operations for the lobe model. 

Lobe Model 

State Vector Operations 

m by n matrix of beams 

Beam widths 

Set Any Parameter 
Get Any Parameter 
Calculate a Lobe 
Print State 

Figure 5.11 Lobe model state vector and required operations summary 

G.       SURFACE MODEL 

The surface model defines the ocean surface with which the rays interact. The current model specifies the 

ocean surface as a smooth pressure-release surface. For most cases this is sufficiently accurate. However, 

if surface effects are being studied, the surface model can be easily changed and re-implemented since it 

has been constructed as a separate entity from the beginning. The state vector of the surface model is that 

of a variable that indicates whether or not the ray in question has intersected the surface. There are two 

methods associated with this state vector and one utility method that outputs a representation of the 

surface itself. This final method will not be considered in this discussion since it is self explanatory. The 

first method is deciding when an intersection of the ray with the surface has occurred. The second method 

is the actual performance of the reflection. The reason for thinking of this as two methods instead of one 

is simply semantics. The first performs a query into the current state of the system and the second 

actually makes changes to the state. This separation was provided so that if the user model referencing 
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the surface model needed to make this distinction, the option was available. The reflection query 

operation is simply performed using vector algebra. Figure 5.12 provides a graphical representation of 

how a surface interaction is determined to have occurred and how a reflection is made, with arrows 

indicating the reflected ray path. 

Plane of Reflection 

previous 

p 
ö -^ -k  reflected 

plane 

Figure 5.12 Reflection of a ray from a plane 

From the ray model it is known that the current state of a ray can be partially defined by a 

position and a direction normal that indicates what direction the point is moving. It is also known from 

vector algebra that a plane surface can be represented as a point and a normal to the surface. From this 

information a detection can be determined. First the vector from the defining point of the plane to the 

current ray position is constructed as, 

S = Pray-Pplane. (5.15) 

Then the perpendicular distance of the ray from the plane is calculated using, 
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d = -S*nv/lam. (5.16) 

This distance then indicates whether or not the ray has penetrated the bottom. If the value of d is negative 

an interaction has not occurred and if d is positive the ray has penetrated into the bottom. 

The reflection problem is founded in Snell's law, so it is there that the derivation must start. 

Snell's law is stated here as, 

sinfe) _ sinfe) (517) 

Notice, however, Snell's law is stated in an inherently two-dimensional scalar form and that the ray model 

is stated in a three-dimensional vector form. The question is then applying Snell's law to ray model 

vector form. It is important to note that the law was derived for three-dimensional space and this two 

dimensional-simplification is valid for the reflection since it occurs in the plane formed by the incoming 

ray and the normal to the surface. Figure 5.12 shows a two-dimensional representation of the three- 

dimensional problem. Since Ci equals Cr, both the incident and reflection angles in Equation (5.17) are 

equal as well. From the figure it can be seen that the only correction to the ray needed is in the depicted 

plane in the direction of the normal to the reflecting surface. This reflection position can be found by 

adding twice the perpendicular distance of the ray position from the surface, to the ray position, which 

results in the reflected ray position. Mathematically this is shown by, 

A 

?«..«*<.= Pray +2^^. (5.18) 

This forces the reflected normal to change in a like manner as shown, 

A A /"A A \     A 

^reflected = Rray ~~ 21 Uray* HplaneJ Spione ■ Kpl") 

These few equations govern all reflections in the surface model and enable precise calculation of reflected 

rays at the ocean surface. 
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H.       BOTTOM MODEL 

The ocean bottom model is similar to the ocean surface model. The major difference is that the 

bottom is modeled as a rigid surface instead of a pressure-release surface. Thus the only difference is in 

the phase of the reflection from the bottom surface. Instead of a reflection phase change of it, the 

reflection phase change is zero. Also the bottom has two contour configurations. The "no slope" contour 

is much the same as the surface, but a depth needs to be specified unlike the surface model. The "sloped" 

contour is a little more complicated; it has a flat deep bottom, a steeply sloping wall and a gently sloping 

shelf that tapers off to a depth of zero. All of the parameters of the "sloped" contour are changeable 

which makes for a highly versatile model. Figure 5.13 shows a three-dimensional representation of the 

surface and the "sloped" bottom models. The bottom model uses the exact same state vector and 

operations as the surface model. Therefore, it also uses the exact same equations as the surface model and 

as such a discussion of the specifics of a bottom model is not warranted. 

A final statement as to the generality of the bottom model needs to be made. Any surface can be 

broken down into a near plane surface by subdividing the surface into infinitely small pieces. The bottom 

model can be broken into a piece-wise planar (gridded) surface, with each plane specified by a point on 

the plane and a normal to the plane as well. With careful planning, almost any bottom interface can be 

modeled with ease and low computational overhead. Care must be taken however to ensure that the 

characteristic size of the bottom structure does not become so small that it approaches the scale of the 

sonar wavelength. This is because errors due to phase interactions become large, in this model, when 

bottom structure and wavelength are of the same order. An important area of future work is the addition 

of methods which can import standard bathymetric databases and compute corresponding normal vectors. 
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Figure 5. 13 Example sloped bottom contour with surface model 

I.        SOUND SPEED PROFILE (SSP) MODEL 

This model is a simple one. It has no state vector and thus supplies information about the current 

time and position only. Its purpose is to return the sound speed and the rate of change of the sound speed 

with position. A detailed discussion of SSP is available in [Urick, 1975]. It has five basic profiles that 

come from [Ziomek, 1996] as the standard profiles. Again due to the highly modular breakdown of the 

RRA model, changes in the sound speed profile model are made easily. Chapter VIII Simulation Results, 

details in specific the SSP models used in the current simulation. An important area of future work is the 

development of an SSP database linked to the bottom model, import of real-time SSP data and SSP data 

visualization utility operations. It is important to note that the broad generality and accuracy of RRA is 

directly dependent on the quality and accuracy of local bottom, surface and SSP models. 

J.        TARGET MODEL 

The target model is designed to keep track of all targets in the virtual world and to provide 
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operations that determine if a target has been detected by a sonar pulse. A target is defined as any object 

that is not environmental, geological or biological. Therefore the target model gives us information about 

the man-made objects in the virtual world It does so by keeping information about each target in the 

virtual world and comparing that to position information provided by the beam model. The state vector of 

the targets contains all the information about the targets. 

In the current implementation the targets are randomly placed moored mines and submarines 

that have no movement. Thus in the current target model the target state vector does not change. This 

state vector is composed of the position and radial size of the mine. As for the submarine, it is considered 

to be composed of several mines and as such just generates a chain of mines the size of the submarine. 

This model is intentionally simplistic and much further work is warranted in target modeling. 

Additionally, information pertaining to the cumulative area of targets detected in the current time step in 

the beam is saved. The operations affecting the state vector are initializing, resetting, detecting a 

collision, getting the area of detection and outputting the target information. Again initializing, resetting, 

getting detection area and outputting are self explanatory. 

The only operation left is computationally efficient collision detection. This model uses the same 

equation for detection of a possible interaction between the sonar beam and the targets as the surface 

model uses to detect interactions between the ray model and the surface. Equations (5.15) and (5.16) are 

used to indicate when the plane of the beam front passes through the target. Therefore the perpendicular 

distance from the plane of the target, d, is used to tell if the target has the possibility of being detected. 

When the sign of d changes from positive to negative this means that the wave front has encountered the 

target in the current time step. Since the plane passing approximating the wave front of the beam is 

infinite in extent further operations are necessary to check if the target (or any portion of it) is in the beam 

tube. This detection is performed by checking to see if the target lies within the X, Y and Z coordinates of 

each pair of points on the box that make up a diagonal in the box. Figure 5.14 visually depicts the 

bounding box concept. The presence or absence of a target is reported at the end of every check. 
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Determining the distance to every object is also useful in another way. The distance of the closest target 

during each check is recorded and this distance is divided by a nominal ocean sound speed of 1500 meters 

per second. This time is then divided by the time per propagation step. The result is the number of 

iterations that can occur without checking to see if a collision occurs. Essentially, this number of time 

steps that can be skipped in between checks for target interactions is yet another member of the state 

vector. This has the potential to be a dramatic speed enhancement over checking all targets every time 

step. 
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Figure 5. 14 Bounding box target detection. A target in the sonar ping volume is considered detected 

K.       PINGSERVER AND PINGER MODELS 

The pingserver and pinger models are included as an example to show how the RRA class library 

can be used. The pinger model is a stand-alone sonar ping model that produces text files that are either 

raw data or three-dimensional renderings of the sonar lobe. The pingserver model is where the true power 

of the RRA model comes into play. The pingserver uses a client-server communications approach, where 

the client asks for a sonar beam to be projected into the virtual world and then the server calculates the 

necessary data and returns this data back to the client. A major benefit of this approach is that a proxy 

server can be placed in between the client and server to improve overall system scalability. This proxy 

server appears to the server as a client and to the client as the server (hence the name). Since the RRA 

algorithm is a space-time based algorithm (no transforms to other domains), the propagation calculations 
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can easily be partitioned and shared among multiple pingserver implementations. Thus, the proxy server 

has the job of getting the request for the sonar ping and then distributing the calculation of the many 

beams required to the many available servers. With the advent of large-scale network clustering, the 

possibility of distributing real-time ERA calculations is highly attractive. 

At this point, a step back from modeling to discuss computer implementation seems appropriate. 

Network clusters, [Hill, et al., January 1998], are collections of large numbers of moderately fast general 

purpose computers connected via a fast local-area network (LAN). The motivating idea is that when a 

highly parallel calculation needs to be done, the task can be split up among the many computers. Such 

clustering can provide gigaflop performance from machines that provide only megaflop performance 

individually. The most amazing aspect of this clustering is that since the individual computers are mass 

produced and general purpose, each one has a very low price. The cost for the creation of one of the 

clusters, Loki, was around $50,000 for a peak performance of 1.4 gigaflops. This cluster was initially 

made around 1996 and production of this same system as of 1998 is estimated to cost 50% less. It is seen 

that the RRA model lends itself to this type of massively parallel computing and it is the pingserver model 

that provides the example of how easy this parallel programming can be.  Thus, the prospect of high- 

resolution sonar beam calculation in real time appears quite feasible. Distributing RRA sonar beam 

calculations over many computers is an important area for future work 

L.       SUMMARY 

This chapter has presented the basic model for the implementation of a RRA simulation. The use 

of the models presented has provided the ability to simulate a virtual sonar environment. The ray model 

provides the basic structures to propagate a sonar ray in real-time through a virtual world. The beam 

model combines four rays to form a beam tube and then adds operations for attenuation and collision 

detection. The lobe model combines a variable number of beams and propagates all of them as one unit. 

The ocean bottom and surface models provide reflection information to the ray model. The SSP model 

provides information on sound speed to the ray and target models. The target model maintains a target 
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database and provides efficient operations to the beam model to determine if a detection has occurred. 

The pingserver and pinger models combine the various models into a cohesive simulation and provide 

example implementations. 

The next step in the process is to convert these model ideas into a working simulation. Chapter 

VII addresses the topic of implementation and integration of the RRA model with the visualization model. 

Appendix A contains the simulation code for the RRA models. 
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VL SONAR VISUALIZATION 

A.       INTRODUCTION 

Simulations typically require some form of visualization. Whether the visualization is in the 

form of text tables or graphic plots, the simulation must produce data in a logical and orderly grouping of 

similar information. In the early days of scientific discovery, information was collected in tables and 

occasionally plotted on paper, usually by hand. With the coming of the digital computer, the mainstay of 

data visualization shifted from text tables to graphic plots, usually in two dimensions (2D). With the 

increase in computational power of digital computers and the widespread availability of three-dimensional 

(3D) rendering software, the time has come to shift once again to a higher form of visualization. That 

higher form of visualization is 3D rendering. 

In the fleet today, sonar tactical planning is still performed from text tables and 2D plots. This 

approach was fine for twenty years ago when less data was processed and evaluated, but today the sheer 

volume of data and the finer resolution of information obtained demand a more robust visualization of the 

incoming data. Since we live in a 3D world, the next step ought to be 3D plots. [Karahalios, 1991] 

discusses the history of data visualization. In that thesis she quotes from [Defanti, 1987] stating that half 

of the human neo-cortex is devoted to visual information processing. Thus, since our brain is wired for 

visual data input and that typically is 3D in nature, the natural conclusion is again 3D representations. 

This chapter explores the possible 3D visualization model for presentation of the results of the RRA 

simulation. 
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B.       VISUALIZATION CONSIDERATIONS 

1.        Tactical Visualization 

In the U.S. Navy fleet today, visualization of four dimensional space-time is performed using two 

dimensional plots. These plots have various combinations of positional and time information as the axes 

of the plots. Time-range, time-bearing, and geographic plots are but a few of the examples in widespread 

use. In addition to these time-space plots there are also time-frequency and space-frequency plots, again 

in two dimensions. The usual practice for evaluating these plots in real time is to show several varieties of 

them at the same time on separate computer displays. There are typically several console operators and 

one supervisor interpreting such plots. The job of the supervisor is to integrate the plots mentally and 

develop a four-dimensional (space-time) mental model of the current sonar-based tactical picture in the 

real world. 

In years past when shipping was not nearly as heavy and detection ranges were much shorter, the 

incoming volume of sonar information was not overwhelming. Today, with increased shipping and 

increased detection ranges, the volume of information processed by a ship's sonar system has dramatically 

increased. This has often led to an overload of information on the operators themselves. To complicate 

matters, the quieting of modern submarines has led to decreased detection ranges for the primary threat of 

interest. With the increase in noise and decrease in signal, these shortened detection ranges result in 

shortened reaction time. Though the human brain is wonderfully created, expecting an information- 

overloaded supervisor to make snap decisions while mentally integrating several plots into one multiple- 

dimension plot is extremely difficult. 

While Gary Kasparov proved that a man using intuition could frequently outthink Deep Blue, 

IBM's chess-playing supercomputer, one must remember that a chess board is infinitely less complex than 

the real world Deep Blue on the other hand proved that raw processing power and proper programming 

eventually can defeat one of the best chess-playing minds. This digression points to the fact that the 
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human brain has limitations in its ability to process large volumes of information and infer likely 

outcomes. This fact leads one to believe that more innovative means of visualization are necessary to 

allow the operator and supervisor to step one more level of abstraction away from the raw data, so that 

timely and accurate decisions can be made. 

In the scientific research community, sonar visualization has really not progressed much past the 

state of the art in the Naval Service. Typically, the extent of visualization is colorful 2D plots, which in 

essence are pseudo 3D plots. Nevertheless, when complex space-time processes are being investigated 

ingenious use of 3D plots, color, intensity, and transparency can provide the researcher with pseudo four 

and five-dimensional plots. All of these properties can be displayed using existing rendering programs. 

As with most physics solutions, judicious simplification and abstraction are a must if a solution is to be 

obtained    Scientific visualization of sonar data can benefit from careful simplification and abstraction as 

well. 

2.        High-Dimensional Space 

Acoustic data is typically a volumetric data set rather than a surface data set. In addition sonar 

has various parameters of interest that one can consider as additional dimensions. Sound intensity level, 

time of travel, and frequency are but a few examples of these extra dimensions. In the visualization 

discipline this is termed a "high-dimensional data space." For the dimensions just mentioned a six- 

dimensional plot needs to be generated to simultaneously render these parameters. How can such a plot 

be conceived? In the world of 2D plotting, special techniques of coloring and use of contours transform 

these plots into pseudo three-dimensional plots. Similar techniques can be applied in 3D renderings. By 

mapping the additional dimensions to other graphics quantities besides spatial, pseudo high-dimensional 

space plots can be generated. 
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3. Available Graphics Parameters 

The question then is how to map these extra-dimensional parameters. In most 3D rendering 

languages, the objects that are created have rendering properties themselves that can be used as 

dimensional extensions, much the same as contour lines are used on geographic mappings. The 

properties that objects possess include color, intensity, transparency, smoothness, reflectivity and 

emissivity. The natural tendency at this point is to imagine that with all of these parameters a pseudo 

nine-dimensional space is possible. This is just not so. Many of the parameters rendered at the same time 

produce unpredictable results or do not elucidate the information intended. For example, no matter what 

color is given to an object, if the object is transparent, it cannot be seen. So indeed, when one decides to 

implement high dimensional space data rendering, careful attention must be given to ensuring that the 

parameters employed do not overlap in such a way as to result in incomprehensible data. These 

fundamental challenges form the basis of scientific visualization research. 

4. Mapping Data to Graphics Parameters 

The task of mapping, for the reasons stated in the last section, must be undertaken with great 

care. Suppose that time of travel of a sonar pulse was linked to the transparency parameter and that the 

intensity of the sonar pulse was mapped to the color. If care is not taken, long before the sonar pulse 

becomes insignificant, as far as intensity is concerned, the pulse may not be visible in the rendering. This 

premature invisibility produces a loss of information in the scene that cannot be recovered. Now suppose 

that the two rendering dimensions and parameters are swapped. Thus, when the sonar pulse intensity 

becomes negligible the time (mapped to color) will no longer be visible. This situation is of little concern 

since the information on intensity is of greater importance that the information on time. In other words, if 

there is no perceptible sonar pulse, the time that it arrived does not matter. This example indicates that a 

hierarchy of informational importance and a hierarchy of object parameters, likely exists, and is variably 

dependent on the goals of the user. The hierarchy of parameters must be chosen so that the parameters on 
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the lower end of the hierarchy have little influence on the parameters that are on the higher end Careful 

use of such a hierarchy may prevent the rendering engine from eliminating important data from the 

visualization. 

5. No Single Right Answer 

Numerous scientific visualization research projects are presently being conducted that are 

investigating high-dimensional data space and the techniques used to make sense of the vast quantities of 

data contained therein. A particularly interesting finding is that there is no single right answer as to how 

the data must be viewed. The type of data and how it is to be used directly influence the way in which the 

data is presented. The format for presenting information from which snap decisions are made will likely 

prove to be different from the format from which keen insights into physical processes are made. Indeed 

it is often user interaction with the visualization data that provides insight rather than any single 

presentation method. Thus, the most important goal and contribution of this project is support for user 

exploration of high-dimensional sonar information using real-time 3D graphics and scientific 

visualization techniques. 

6. Initial Visualization Recommendations 

The initial recommendation for visualizing sonar data is that the three spatial components are 

mapped to the three spatial coordinates of the visualization system. The sound intensity is mapped to 

transparency in a dynamic visualization, while color is mapped to detectability. In a static beam, 

intensity, distance from source and detectability are mapped to color. All three can be mapped to color by 

providing a means of selecting the desired parameter. A full investigation of sonar parameters and the 

means of best visualizing them definitely needs to be continued as future work. These initial visualization 

recommendations are provided as a starting point for evaluation of the most important sonar parameters 

provided by the RRA model. 
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C.       RRA SONAR VISUALIZATION MODEL 

1.        Interactive Server Model 

Figure 6.1 depicts the standard visualization model. This hierarchy provides the general high- 

level concept of what modules comprise a visualization model. Interactive visualization also suggests the 

need for an interactive user interface model, which is depicted in Figure 6.2. 

Rendering 
Engine 

Figure 6.1 Visualization conceptual hierarchy 

a.        Data Flow 

The data flow in the interactive model is quite simple. After all communications 

between the sections have been established, which happens transparently to the user, the simulation is 

waiting for user interaction. Figure 6.2 shows the hierarchy of the user interface model. The user enters 

the specifics of the characteristics of the sonar pulse desired and the desired parameters of the platform 

containing the virtual sonar system. When all initialization data is entered, the user can execute the 

ordered platform and sonar pulse commands by pressing the appropriate input buttons. This returns 

control from the control panel to the battle scene manager which relays the sonar ping requests to the 

sonar server and executes the platform commands. The battle scene manager then waits for return of the 

requested sonar information from the sonar server. When the requested data arrives, it is processed and 

forwarded to the rendering system via the rendering system interface. For responsiveness threads are used 

extensively in the processing of the interactive model. 
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Figure 6.2 General user interface model hierarchy 

Threads are processes that can be run in parallel and are used when multiple concurrent 

processes are required. Thus the platform controller has a timer thread that updates the vehicle position 

every tenth of a second. Each of the interfaces to the battle scene manager, request sender, data receiver, 

rendering interface and the control panel, are also threads. This allows the battle scene manager to 

execute each phase of the management process in parallel and only control the timing of when the results 

of each interface are added to the current state of the system. 

b.        Example Execution 

This section describes how the individual components in Figure 6.1 are executed. The 

interactive sonar server is executed on a dedicated remote computer, which allows the server to be located 

on the most computationally capable computer. The proxy server, a bridge between the user interface 

client and the sonar server, is typically executed on the client computer where the user determines the 

visualization is to be run. This is done because most web browsers have security features that prevent 

them from communicating directly with other networked computers. Finally, the local web browser is 

started and the virtual world is loaded. The loading of the virtual world performs two functions; the 

rendering system is loaded and the user interface, which is linked to the virtual world, is started in the 

browser. At this point the entire interactive simulation is initialized and the control panel is ready to 

accept user input. 

As an example of simulated sonar operation suppose a single sonar ping with a three 

degree horizontal and vertical lobe width is desired. Each lobe isdivided into nine sub-lobes called 
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beams. Thus each beam has a one degree horizontal and vertical beam width. Figure 6.3 shows a control 

panel with all the choices filled in and thus defines the requested ping. When the 'ping' button is pressed 

the control panel thread passes the pulse specifications to methods in the battle scene manager. The battle 

scene manager invokes the request sender thread and the data receiver thread. The ping sender thread 

communicates with the proxy server which in turn communicates with the sonar server that is running on 

a separate machine. The sonar server calculates the positions of the sonar beams over time and detects 

any collisions with objects in the virtual world. While this computation is occurring, the data receiver 

thread is waiting for information and the ping sender thread finishes execution and terminates. When 

RRA calculations are finished, information on the sonar beam positions and target detections is delivered 

over the local area network to the proxy server, which forwards the information to the data receiver 

thread. The data receiver thread returns the information to the battle scene manager and then terminates 

execution. The battle scene server then executes a VRML generation thread that converts the raw data 

into a valid VRML node structure. This node is then sent to the VRML scene. When the node is 

processed the target information appears on the screen as well as a representation of the beam propagation 

through the water. This process can be repeated over and over again to explore the entire virtual world. 

Additionally, if the battle scene manager is modified to eliminate user input and an artificial intelligence 

module is added to control the sonar and platform, an autonomous virtual vehicle can be created. 
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Figure 6.3 Interactive server control panel 

2.        Stand-alone Server 

Figure 6.1 also serves as a depiction of the stand-alone server model. As with any useful 

program it must accept input, access data and return information to the user. 

a. Data Flow 

Data flow in this model is extremely simple. Appendix B shows source code for a 

typical example. In this example the virtual world is constructed and filled with targets. The platform 

position and sonar characteristics are established in the lobe class. The lobe class then constructs the 

beams that comprise it. The beam class then constructs the rays that form it and the simulation is ready to 

ran. The lobe position (and thus the beam and ray positions) is calculated over time and the subsequent 

positional data is returned as valid VRML 97 code. Then the VRML code representing the surface, 

bottom and lobe is printed to the console. 
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b.        Example Execution 

The only action that the user has to perform once the stand-alone model is coded and 

compiled is to execute the program. When the program is executed, the surface, bottom, sound speed 

profile, target and lobe model implementations are initialized. The lobe parameters (and thus the beam 

and ray parameters) are initialized and the lobe is calculated by calculating the time behavior of each 

beam in the lobe. Each beam is then calculated by calculating how each ray interacts with the surface, 

bottom, water column and the targets in the virtual world. Upon completion of the calculations, methods 

in each model class are called that produce VRML 97 compliant code that allow visualization of the most 

recent lobe calculation. The simple examples provided in this thesis produce compelling results. Much 

more sophisticated applications and exciting research in real-time 3D sonar visualization now appears 

possible. 

D.       CONCLUSIONS 

With current sonar data collection and processing abilities continuing to accelerate, something 

needs to be done with visualization to ease the information burden on the person evaluating the incoming 

data. Creative and ingenious ways of displaying data in three dimensions must be devised if even higher 

information density is to be processed by a human. This new level of abstraction will provide enhanced 

understanding of the problem under consideration and enhanced ability to make more rapid decisions. A 

series of example programs which use the RRA API are presented. Initial results provide useful insight 

and are extremely encouraging. Real-time 3D sonar visualization is an important new field which now 

appears computationally feasible. A great deal of research and experimentation is needed to capitalize on 

this new tool. 
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VH. MODEL IMPLEMENTATION AND INTEGRATION 

A. INTRODUCTION 

This chapter discusses the practical factors involved in implementing a simulation. Choosing the 

computer language with which the model is implemented into a simulation is a critical task. The speed of 

execution of the code, the ease of integration with some form of visualization system and the network 

interface methods are discussed as they pertain to the ERA simulation. Implementation of the sonar 

server model (RRA model) and the visualization model is summarized and the integration of these two 

models is discussed in the last section. 

B. CHOICE OF PROGRAMMING LANGUAGE 

Using the models specified in the preceding chapters, it is time now to turn to implementation of 

the simulation. As with most simulations in the recent past, this simulation is implemented on a general 

purpose digital computer. The primary question is choosing the best computer language to use to 

accomplish the goal. One goal is that the simulation model components might be distributed as widely as 

possible. This is a daunting task, since any two computers are rarely configured compatibly. The design 

criteria for this thesis are provision for cross-platform compatibility, computational speed, real-time 3D 

visualization and network programming. 

1.        Cross-platform Compatibility 

With the creation of the Internet, cross-platform compatibility has become a rallying cry. In 

response many private sector companies have developed tools with the network and inter-connectivity in 

mind. Due to the nature of the RRA model and its multiple potential uses, choosing a programming 

language designed for network programming is a major requirement. In the next three sections, two 

63 



complimentaiy programming languages and two networking protocols are discussed that have recently 

come into existence that allow all goals to be met. 

2.        Number-Crunching Speed 

As with any inherently physical simulation of a natural process, computational speed is essential 

if real-time interaction is required. Even if real-time interaction is not required, computational speed is 

still an important consideration. However, the source of speed is no longer restricted to highly optimized 

near machine language, already-compiled code nmning on supercomputers. The source of speed is the 

networked interconnection of many computers. In a sense, the network is the computer. With this in 

mind, Java, developed by Sun Microsystems, is a sensible choice for a programming language. Even 

though compiled Java code is 5-15% slower on a given single computer compared to optimized 

FORTRAN or C/C++, Java from the start has been tightly integrated with the Internet and network 

computing. This tight coupling leverages the power of the Java language to be faster in completing a 

distributed task than either of the two standard scientific languages. Although C/C++ has seen good 

success in network computing, networking in C/C++ is not standardized completely and not designed into 

the language from the very beginning. Another factor weighing heavily is that the Java development 

environment is completely free as compared to most full-featured FORTRAN and C/C++ compilers. The 

free aspect of Java allows a person developing an application to know that money will not stop a potential 

user from either not using it or from trying to use a different version of a given type of compiler that is 

already owned When a potential user wants to modify a RRA application, he must merely retrieve the 

Java runtime environment via the Internet, install it and run the application. Since an unlimited speed 

potential and widespread availability of the common operating environment exist in the form of Java, it is 

the logical choice for implementation. 
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3. Visualization 

Though Java does provide some facilities for data visualization, the goal for this simulation was 

three-dimensional (3D) visualization. Java does not yet supply all the needed constructs to form a truly 

3D virtual world and is not used for scientific visualization (although the Java 3D libraries have recently 

become available). Once again another freely available software language came to the forefront. This 

product is the Virtual Reality Modeling Language (VRML), which typically runs and is rendered inside a 

web browser. It is usually a plug-in program to the standard web browsers provided by Microsoft and 

Netscape. Again, this combination of VRML rendering engine and web browser comes at the right price: 

no cost. VRML gives all the constructs to form an immersive 3D environment as well as constructs to 

make the environment change over time with user input. As an added bonus, due to the wide acceptance 

of Java as the language of the web, direct interface from Java to the VRML web browser is provided. 

Other graphics-rendering programs exist and are free to distribute as well, such as openGL, but none are 

so tightly interfaced, as widely available or as popular as VRML. This browser interface allows the 

interconnection of standalone Java programs to VRML scenes through the web browser. Clearly the 

choice of visualization language is VRML since it integrates so tightly with the Java compiler already 

chosen and can immediately render RRA results on any personal computer. More information on 

integration of Java and VRML is found in [Brutzman, 1998]. 

4. Networking 

Java already has many fine networking features. Typically the data that can be passed through 

network links is formatted in a way that only reader/writer programs written together can decode the 

information. In highly structured simulations, entire state vectors need to be passed. Typically state 

vector changes render all previous versions of a program useless. Two protocols are available which 

address standardization of data passing. These protocols are Common Object Request Broker API 

(CORBA) and Distributed Information Simulation (DIS) protocol. These protocols are robustly designed 
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and freely available, but also are complex and difficult to learn. Another candidate is the dial-a-behavior 

protocol work in progress at NPS which simplifies formal specification of over-the-wire data formats 

[Brutzman, August 1997]. Thus for the purposes of this thesis the networking facilities provided by Java 

proved to be sufficient.   In the future, as this simulation is integrated into a larger distributed simulation, 

integrating one of these data-oriented protocols will be useful and necessary. More information on 

graphics internetworking is found in [Brutzman, August 1997]. 

C.       MODEL IMPLEMENTATION 

Now that the necessary software tools have been chosen to transform the many models into a 

simulation, it is time to present some aspects of the implementation that shaped the final Java class 

library for the RRA simulation. The following two sections will discuss some of the particulars of the 

implementation of the RRA and visualization models into a full-fledged API. 

1.        RRA Implementation 

Implementation of the RRA model was straightforward since Java is an object-oriented 

programming language. Each sub-model of the RRA model was developed as a separate class, since 

classes in Java are an encapsulation of variables and methods in one common object. Member variables 

contained in the object keep track of the state of the object and methods contained in the object allow 

changing of or accessing of the data in the class. This correlates well to the model concept of state 

vectors and operations. A completed class then becomes a building block for other higher-level classes. 

As an example, suppose the ray model has been implemented as the ray class. This class itself becomes 

the definition of a ray object template. As with any object that can be produced from a template, many 

exact duplicates of the object can be made from the template. This object creation from the class 

definition is termed instantiation. Thus, with the ray class, many individual rays can be created and as 

with all objects the state vector describing each object can have no influence on the state vector of any 

other object. It is seen that the formation of the beam class requires the creation of four individual ray 
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objects. In addition to the ray objects, methods must be made that manipulate the ray objects, in 

accordance with the allowed operations on ray objects, and that produce the desired effect on the beam 

object. This object-oriented layering continues through the lobe model to the pinger and pingserver 

models. 

The only methods yet to add to all of these models are those that allow each object to sense 

interactions and perform actions based on the perceived interaction. For example, when a sound wave 

strikes a rigid surface, the wave bounces off the surface in accordance with Snell's law. Thus a method is 

added to the bottom model that allows a ray object to communicate with the bottom object. This 

communication allows the bottom object to retrieve data from the ray in regards to its position and 

direction of motion. With that retrieved information the bottom model is then able to tell if an interaction 

has occurred and can report its findings back to the ray object. The ray object is then able to alter its state 

with the reflection information provided from the bottom object. The full RRA model is then simulated 

following these rules of layering and object interaction. The full RRA code is found in Appendix A. 

Several stand-alone visualization example programs are found in Appendix B. The source code for the 

pinger and pingserver programs are found in Appendix C. Excerpts from the very useful auto-generated 

Javadoc software documentation are found in Appendix F. 

2.        Visualization Implementation 

Implementation of the visualization model requires implementation of each of the visualization 

sub-models just as with the RRA implementation. Whereas implementation of each of the RRA sub- 

models is quite similar, implementation of each of the visualization sub-models is not. 

The user interface sub-model is implemented in two different ways, depending on whether or not 

the model is stand alone or interactive. The stand alone model uses the web browser user interface. Each 

desired data set to be viewed is retrieved via a web page or the web browser's file selection routines. At 

this point the interactive model requires that user input be supplied, however the standard web browser 

does not provide this kind of input. The VRML world can be programmed to perform user input, but it is 
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difficult compared to functionality already built into Java. Thus, a Java class called the battle scene server 

provides a control panel for the user to enter detailed information about the desired sonar parameters. 

This class is much the same as the classes in the RRA class package, but differs in the ability to be 

executed in a VRML web browser as a program script file. 

The data source sub-model also has its implementation determined on the basis of the form of 

user interaction. In standalone visualization, the source of data is from a file provided by the local 

operating system as requested via the web browser user interface. In interactive mode the source of data is 

read via sockets across the Internet by the battle scene server object. 

The data from the two different sources is provided to the graphics rendering model. This model 

is implemented via the VRML browser operating inside the web browser. In standalone mode 

information from the data source is passed to the VRML browser by the web browser. This data is parsed 

and rendered by the VRML browser and appears on the computer screen as a virtual world. In the 

interactive mode the data is parsed by the battle scene server via a method call to the VRML browser. 

This parsed data is directly inserted into the VRML browser scene graph via another method call to the 

VRML browser. The data then appears in the currently open virtual world 

D.       INTEGRATION 

1.        Standalone 

Integration of the RRA and visualization model implementations into a complete simulation is 

the final task. The point of interaction and thus the point of integration in the RRA implementation is the 

pinger class. The pinger class provides for the text being written to a system file. This text is in the form 

of VRML compliant code that specifies the requested 3D visualization of the desired data, which is stored 

to a file on the computer. This file can then be viewed with the VRML browser in a semi-interactive 

manner; the user can explore the data from any perspective, but cannot interactively modify the sonar 

beam parameters. 
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2.        Interactive 

In interactive mode, data transfer occurs across the Internet with the pingserver of the RRA class 

package acting as the server and the battle scene server of the visualization class package acting as the 

client. A VRML world is created, and an object in it has sonar capability and thus has a connection out of 

the world to the web browser. The battle scene server interfaces with the user, the object in the VRML 

world and the pingserver. When the user requests a sonar pulse, it tells the pingserver the specifics of the 

request and the pingserver starts calculating. When the calculations are complete the information is 

forwarded from the pingserver to the battle scene server in the form of VRML compliant text strings. The 

battle scene server then converts the text to compiled VRML code. This compiled code is sent to the 

object in the VRML world where it is automatically added to the existing scene and then rendered. 

E.       CONCLUSIONS 

The choice of the prograrruning language depended on many requirements. Java from Sun 

Microsystems met each of the requirements and was selected. It was selected for its cross-platform 

compatibility, quick execution, visualization capabilities and network capabilities. The choice of Java 

allowed the RRA model to be converted to an API for use in simulation. The highly structured object- 

oriented features of Java allowed the API to be built in a modular fashion. The ability of VRML web 

browsers to execute Java code created a tight integration between the VRML browser and the Java RRA 

API. The ability to integrate well with Java is the main reason that VRML was chosen as the rendering 

language. The integration of the API and the visualization model implementation developed into two 

programs. One that allowed interactive control of the RRA API parameters and VRML parameters and 

the other only the VRML parameters. 
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Vm. SIMULATION RESULTS 

A. INTRODUCTION 

This chapter presents the simulation results. The accuracy of the RRA API is shown to be nearly 

identical to the original RRA program as presented in [Ziomek, 1993]. In addition, the accuracy of 

energy propagation is compared to the normal mode model. This comparison proves that the RRA API is 

reasonably accurate in energy propagation. Detection of virtual world objects provided expected results 

with a two percent error rate for randomly placed mines. Visualization results were very good, but they 

barely scratch the surface of the abilities of real-time 3D sonar visualization. 

B. RRA TEMPORAL AND POSITIONAL ACCURACY 

In [Ziomek, 1993] a comparison of the output of the RRA code to that of a set of four coupled 

ordinary differential equations (ODEs) was shown. In summary it showed that the outputs down to 

several decimal places were identical for many different bottom depths and sound speed profiles. Thus it 

was shown that the RRA solution was not erroneous in its development. Also the RRA algorithm is a full 

3D propagation algorithm that allows for range-dependent environments. These features of RRA allow it 

to be a very general high resolution and high accuracy solution for a wide variety of ocean conditions. 

C. SIMULATION ACCURACY: JAVA VERSUS FORTRAN 

Ziomek's original RRA code was written in FORTRAN while the code for this thesis is written in 

Java. Since Ziomek's RRA code was validated against an accepted set of coupled ODE's, showing that 

the implementation in this thesis compares well to his data set provides validation of the Java 

implementation. Below are several tables that show the comparison of the RRA simulation in both 

FORTRAN and Java. Because differences between the solutions are negligible, no plots of these results 
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are provided. Thus the Java implementation produced by this thesis provides valid results for Ziomek's 

recommended test cases. 

Table VIII. 1 Sound Speed Profile 1: constant speed of sound 

c(y) = 1500 m/s    0 < y < 200 m 

Method yo(m) ßo (deg) r(km) y(m) T(S) s(km) 

FORTRAN 100 45 10.0 99.95 9.428091 14.1421 

Java 100 45 10.0 100.00 9.428090 1.41421 

FORTRAN 100 85 10.0 174.88 6.692132 10.0382 

Java 100 85 10.0 174.87 6.692132 10.0382 

FORTRAN 100 135 10.0 100.05 9.428091 14.1421 

Java 100 135 10.0 100.00 9.428090 14.1421 

Table VUI.2 Sound Speed Profile 2: Linear SSP with a positive gradient 

c(y) = 1500 m/s + (0.017/s)y 0 < y < 200 m 

Method yo(m) ßo (deg) r(km) y(m) T(S) s(km) 

FORTRAN 100 45 10.0 99.95 9.417422 14.1421 

Java 100 45 10.0 100.36 9.417592 14.1424 

FORTRAN 100 85 10.0 162.57 6.683496 10.0374 

Java 100 85 10.0 162.74 6.683505 10.0374 

FORTRAN 100 135 10.0 100.05 9.417422 14.1421 

Java 100 135 10.0 100.03 9.417403 1.41421 

Table VUJ.3 Sound Speed Profile 3: Linear SSP with a negative gradient 

c(y) = 1500 m/s+ (-0.017/s)y 0<y<200m 

Method yo(m) ß a (deg) r(km) y(m) T(S) s(km) 

FORTRAN 100 45 10.0 99.95 9.438795 14.1421 

Java 100 45 10.0 100.40 9.438980 14.1424 

FORTRAN 100 85 10.0 168.96 6.699409 10.0380 

Java 100 85 10.0 168.86 6.699402 10.0380 

FORTRAN 100 135 10.0 100.05 9.438794 14.1421 

Java 100 135 10.0 100.44 9.438583 14.1418 

Table VHI.4 Sound Speed Profile 4: Parabolic SSP 

c(y) =1490 m/s + (4xl0_5/ms)(y-500m)2     0 < y < 1000 m 

Method yo(m) ßo (deg) r(km) y(m) T(S) s(km) 

FORTRAN 500 85 10.0 777.48 6.705893 10.0150 

Java 500 85 10.0 777.45 6.705896 10.0150 
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FORTRAN 500 95 10.0 222.52 6.705893 10.0150 
Java 500 95 10.0 222.55 6.705896 10.0150 

FORTRAN 500 135 10.0 545.00 9.448829 14.1104 
Java 500 135 10.0 543.48 9.449543 14.1115 

Table VIII. 5 Sound Speed Profile 5: Classic SSP 

c(y) = 1500 m/s + (0.016/s)y 0<y<100m 

c(y) = 1501.6m/s + (-0.02956/s)(y-100m)     100 < y < 1000 m 

c(y) = 1475m/s + (0.017/s)(y-1000m) y>1000 m 

Method yo(m) ßo (deg) r(km) y(m) T(S) s(km) 
FORTRAN 50 45 10.0 1760.21 9.604047 14.2771 

Java 50 45 10.0 1758.87 9.604941 14.2781 
FORTRAN 50 85 10.0 1595.33 6.806873 10.1264 

Java 50 85 10.0 1596.28 6.807168 10.1266 
FORTRAN 50 125 10.0 840.08 8.295966 12.3284 

Java 50 125 10.0 839.14 8.296582 12.3290 

where y in the Ziomek coordinate system is identical to depth of water. Figure 8.1 shows a representative 

deep-water SSP. Each profile also reflects the effects of a pressure release surface and rigid bottom. 

1470 1485 1490 

Sound Spaed [m/s] 

1505 

Figure 8.1 Representative deep-water sound speed profile 
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Minor differences between the solution implemented in Java and FORTRAN are noted in the 

above tables. These differences were made smaller by choosing a smaller step size of time in the 

simulation. The reason these results were presented and not the more accurate values was execution time 

related. The smaller step-size runs had run times on the order of several minutes while the larger step- 

size had run times on the order of tens of seconds. Since the main use of the RRA API is intended to be a 

real-time simulation, execution time does become a consideration as well as accuracy. The compromise 

was to choose the quickest time that had no more than 1% error, compared to the FORTRAN 

implementation of RRA. This resulted in a time step size of 6ms. 

These simulation results show that the RRA algorithm and the specific simulation of it presented 

in this paper are accurate from a time and positional sense. The next step is to consider the accuracy of 

energy transport in the RRA API. 

D.   RRA ENERGY TRANSPORT ACCURACY 

In a complex environment, especially with ocean bottoms that are not smooth when compared to 

the wavelength of the sonar pulse being used, it is a fair assumption that the interference patterns that one 

expects will be effected by strong interaction with the rough ocean surface and bottom. This interaction 

with somewhat random surfaces will in essence result in the sound waves becoming incoherent. This 

break down in coherency allows the pressures of individual waves to be superimposed on one another 

without regard to phase. This is not necessarily true if the wavelength of the sonar is comparable to the 

acoustic length of environmental objects. Since the design of this thesis was based on finding mines as 

the smallest objects, the wavelength of the sonar must be less than the size of a mine. Assuming that the 

size of a mine is one meter in diameter and the speed of sound in sea water is 1500 m/s, the minimum 

frequency to be able to resolve the mine is 1500 Hz. This and higher frequencies are typically used for 

this type of identification work. Most ocean structures tend to have acoustic lengths that are much greater 

than about one meter, but these larger structures tend to have smaller structures on them that can be near 

the size of the acoustic wavelength of the sonar. Therefore, with extensive acoustic interaction with the 
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ocean bottom and its structure, it is a safe assumption to use incoherent summation of pressure waves. 

However, for the sake of comparison purposes, it is necessary to compare the energy transport of the RRA 

algorithm to that of another accepted accurate model. 

To validate the RRA energy transport results, a highly simplified environment is used. This 

environment has a pressure release surface and a rigid bottom at 100 meters of water depth. Both surface 

and bottom are infinite in extent and sound speed in the water is 1500 m/s. Since the sound speed is 

constant, frequencies much lower than the typical lower limit (500 Hz, [Etter 1996]) produce accurate 

output in the RRA algorithm. Thus a frequency of 100 Hz was used as the frequency of operation for 

energy transport calculations. This low frequency was also used in order to speed up processing in the 

normal mode model, since it performs most efficiently at low frequencies. From the set up of this 

environment, it is seen that coherency must be adhered to in order to obtain accurate results. Thus for the 

time being, the real world parameters that result in incoherency are neglected and the ideal RRA model 

energy transport is compared to the normal mode model energy transport. The normal mode model was 

chosen since it is viewed as being very accurate in predicting energy transport for water columns of very 

simple geometry. 

Figure 8.1 compares the energy transport of the RRA model with the energy transport of the 

normal modes model. Notice how closely the two data sets correlate to each other. Thus coherent energy 

transport of the RRA model is similar to energy transport in the normal modes model. Now if we assume 

incoherency and can agree that this assumption has been used for years with close correlation between 

simulation and reality, then the RRA output is accurate. That is to say as accurate as assuming 

incoherency can be. Figure 8.2 shows a logarithmic trendline of the RRA model using incoherent 

summation of the pressure waves. This trendline shows the expected behavior. It is now seen that not 

only is the RRA algorithm accurate in a temporal and spatial sense, it is also reasonably accurate in 

calculating the energy transport in a simple geometry and when incoherency can be assumed in a more 

complex geometry. 
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Figure 8.2 Transmission Loss of RRA model versus Normal Mode Model 

E.        DETECTION OF VIRTUAL OBJECTS 

To complete the RRA API validation the simulation needs to be used to perform some good task 

other than showing itself to produce sound pressure fields comparable to other algorithms. It needs to be 

used in a task for which it has been designed. That task being, the searching of a complex minefield in 

order to ascertain whether or not the detection capabilities of the RRA model function as desired. 

1.        Mine Detection Scenario 

In this scenario a single vehicle will traverse a shallow water area of 100 meters in depth. There 

are 50 mines placed in a 1 kilometer by 1 kilometer minefield. The mines are randomly placed in all 

three dimensions. The water column is characterized by a constant speed of sound, the surface is a 

smooth pressure release surface and the bottom is a smooth horizontal rigid surface. Additionally, any 

acoustic energy leaving the 1 kilometer square is considered lost. In this test scenario, the RRA-based 
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simulated sonar system detected 49 of the 50 mines in the area. One expects that all mines are detected 

since the conditions are ideal and the only energy losses are when the sound leaves the 1 kilometer square 

area. Interestingly the reason that one of the mines was missed was due to the handling of reflections. 

Since a beam is defined as the area enclosed by four rays, when some of the rays encounter the surface 

sooner than others, there is a period of time that the beam is not traveling as it does in the real world; the 

wave front is not perpendicular to the directions of propagation of the four rays. The magnitude of this 

effect can be minimized by keeping the beam width and ping interval small which keeps the area of the 

advancing beam front small. Ideally this effect can be removed as the beam widths become arbitrarily 

small. This however introduces a massive time overhead and thus another compromise is made, this time 

between beam width and computational time. Improved algorithms and faster computers may someday 

make this small error disappear. A promising topic for future work is adaptively combining higher 

resolution, more sophisticated collision detection and smaller step size when in the vicinity of reflections. 

The code for this scenario (Pinger.java) is found in Appendix B. 

F.       VISUALIZATION RESULTS 

The last two pages of this chapter contain four example sonar renderings. These renderings 

begin to show the potential of high-dimensional plots. All of the figures show the area swept out by a 

sonar beam with four degrees beam width in both the horizontal and vertical directions. The beam is 

directed at twenty degrees west of north with an eighty degree elevation from straight down. It is 

propagated for eight seconds into the sloped ocean terrain. Figure 8.3 shows the beam with transmission 

loss mapped to the color field of the VRML beam object. Figure 8.4 shows the same sonar beam with 

time mapped to color and transmission loss mapped to intensity. This mapping has the effect of drawing 

attention to only the low transmission loss portions of the beam, while giving a good feel for time and 

hence distance of the ping as it traverses the environment. Figure 8.5 shows presumed detectability and 

counter-detectability limits mapped to color and time mapped to intensity. This mapping has the effect of 

showing that the reflections coming back from the slope have little chance of counter detection by an 
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enemy platform. Figure 8.6, which shows the same detectability limits, has its transmission loss mapped 

to intensity. This figure more clearly shows where the area of counter detection is by allowing only the 

most intense parts of the beam be seen in the later stages of propagation. Taken together, these example 

figures serve to show that with some ingenuity and several mapping parameters, much more information 

can be displayed in the same volume. 

In conclusion, these simulation results were exactly those desired when the problem started out. 

One unexpected result was the large number of rays that need to be calculated to achieve accurate phase- 

coherent results. If incoherent summation can be assumed then the number of rays necessary drops 

considerably.  However, with the continued increase in speed of general purpose computers and the 

advances in massively parallel networks, even coherent summation will be rapid. 

G.       CONCLUSIONS 

The accuracy of the RRA API is shown to be nearly identical to the original RRA program as 

presented in Ziomek [1993]. In addition, the accuracy of energy propagation is compared to the normal 

mode model. This comparison proves that the RRA API is reasonably accurate in energy propagation. 

Detection of virtual world objects provided expected results with a two percent error rate for randomly 

placed mines. Visualization results were very good but they barely scratch the surface of the abilities of 

real-time 3D sonar visualization. For information on obtaining a video of important simulation results 

from this thesis see Appendix G and for information on obtaining a CD ROM of the thesis contents and 

accompanying code see Appendix H. 
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Figure 8. 3 Sonar beam showing transmission loss mapped to color 
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Figure 8. 4 Sonar beam showing time mapped to color and transmission loss to intensity 
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Figure 8. 5 Sonar beam showing detection thresholds mapped to color and time to intensity 
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Figure 8. 6 Sonar beam showing detection thresholds mapped to color and transmission loss to intensity 
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IX. CONCLUSIONS AND RECOMMENDATIONS 

A. PRINCIPAL THESIS CONCLUSIONS 

This chapter gathers together the many conclusions that have been reached throughout the thesis. 

The principal conclusion of the entire thesis is that realistic real-time 3D sonar simulations and 

visualizations can be constructed with current computer hardware. Through the combination of strong 

network programming languages, Java and VRML, and the Internet, almost unlimited processing power 

can be supplied to the RRA sonar server. The sonar server coupled with a proxy server is highly 

scaleable. Adding more processors to a LAN can provide more sonar pulses per second or a higher 

degree of accuracy as needed. Widely available and inexpensive 3D graphics rendering software allow a 

deeper understanding of sonar data, as well as the ability to create immersive virtual world battle space. 

The advent of real-time 3D sonar visualization is a major breakthrough in sonar system design and 

employment. 

B. SPECD7IC CONCLUSIONS 

1.        Tactical Simulation 

Tactical simulations improve significantly when using more accurate sonar information. The 

goal of tactical simulations is that of accurate prediction of real-world tactics performance, for use in 

preliminary tactics evaluation or operator training. These performance evaluations are only as good as the 

simulation that they are running on. Likewise, the simulation is only as good as the components from 

which it is composed. Evaluating tactics with only geographic constraints in mind is limited in value 

when compared to a simulation that takes in to account geographic constraints and water column 

properties that affect sonar, the primary underwater sensor. Tactical simulation results are further 

enhanced by advanced information presentation paradigms. Advanced presentations allow for more 
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intuitive and interactive, high-density information representations that lends more insight into the tactical 

performance. 

2.        Sonar Simulation 

Ray theory solutions such as RRA can produce fast real-time sonar data information. These 

solutions can be characterized as three-dimensionally accurate in position, time and energy transport. The 

energy transport accuracy is verified for short-range shallow-water conditions to be nearly the same as is 

produced by normal mode theory. The same characteristics that make it ideal for accurate sonar 

information also create the right conditions for accurate detection information on targets in the virtual 

world An especially important conclusion drawn about the RRA model is that it is highly scaleable. The 

number of processors on a given LAN can be increased without bound (as long as the LAN capacity is 

large enough to handle inter-process communications) and the sonar lobe can be divided into smaller and 

smaller pieces (limited only by the accuracy of double-precision floating-point numbers) providing for any 

desired accuracy of sonar information. Astonishingly, when proper care is taken, this can be done in real 

time (or faster than real time). Currently such capability is generally considered unfeasible on any 

computer, so this is an important result. 

3. Visualization 

In addition to tactical advantages 3D visualization of sonar information gives enhanced feel for 

space, time and intensity interactions, especially in relation to geographic features and variable sound 

speed profile (SSP). Given the high-dimension data space associated with acoustic signal processing, new 

and different forms of sonar visualization must be developed. This thesis lays the foundation for what 

advanced sonar visualization techniques might provide to tactician and researcher alike. With sonar users 

encountering larger and larger data sets, meaningful and highly condensed information need to be 

presented in a highly condensed and intuitive way, in order for the human brain to be able to process all of 

the data. These information sets are even more important to the tactician than the researcher in that 

82 



properly designed information rendering can allow for quicker identification and correlation, leading to 

enhanced response time and thereby improving safety of ship. 

C.       RECOMMENDATIONS FOR FURTHER WORK 

1. Tactical Simulation 

With the enhanced simulation capabilities of the RRA sonar server API, the Manta UUV and 

Phoenix AUV tactical minefield searches ought to be upgraded to get better, more physically based 

information on tactics evaluations for autonomous minefield searches. Modification of the search area to 

incorporate realistic boundary conditions, geographic constraints and environmental sound speed profiles 

will lead to even more realistic tactical evaluations. Such development can lead to an optimal search 

pattern development in situ. 

2. Sonar Simulation 

The RRA sonar simulation API might benefit from a number of additions that can enhance 

realism of the model compared to real world processes. The following short paragraphs summarize the 

needed modifications, some explicitly stated in the body of the thesis and some only implied. 

A more complex bottom needs to be modeled that allows for arbitrary complexity in the physical 

constraints imposed by the bottom. Along with this increased complexity several choices for bottom 

composition need to be included that model more complex structures such as shale, clay, sand, and gravel. 

Ideally these structures can be built into a VRML 97 ElevationGrid node with additional fields added to 

indicate bottom composition at the various grid points. The effect of surface reverberation needs to be 

added to induce the all-too-present clutter in the sonar information that is generated as the acoustic energy 

interacts with the bottom. 
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A more complex surface model needs to be created that includes the disruption in the surface 

induced by wave action and micro-bubble formation. These effects have great influence on reverberation 

from the surface of the ocean. 

The current SSP model incorporates a spatially varying model that must be specified at 

compilation time. This is a severe limitation. Ideally, a model that can access a historical environment 

database of values from real-world sampling and merge it in a meaningful way with a stream of recent 

sampling updates will provide a more realistic world, one that reflects the most up to date SSP 

information. This in and of itself forms the basis of an entire thesis.  To this enhanced model other 

effects need to be added, volume reverberation and noise, which further the realism of the API. The 

extreme dependence of sonar on SSP in every respect makes such work a high priority. 

Improvement to the target model offers enough of a challenge so as to warrant additional thesis 

work. The current model assumes the targets are spherical and that more complex targets (e.g. 

submarines) can be constructed of multiple adjacent spheres. This model has severe limitations when 

objects much larger or much smaller than the wavelength of the acoustic signal are encountered. 

Advancements in the processing speed of collision detection of the ping-to-target interaction needs to be 

made before even larger numbers of objects might co-exist in the virtual world. 

A final improvement might be to offer different propagation models in the RRA sonar API. This 

can make it a more general sonar API for researchers and extend the range to which the API target 

information is valid. Probable candidates include the finite element and split-step Fourier parabolic 

equation models. Both models require stepping out in range which can be converted to the time-space 

domain and can fit into the basic structure of the current RRA sonar API. Nevertheless, it remains 

important to note that RRA is very general and accurate, so integration of additional sonar models is not a 

prerequisite for widespread use. The current RRA API appears ready to serve as a computational engine 

to model most (and perhaps all) sonars currently employed by naval ships. 
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3.        Visualization 

The biggest, most important and most exciting task recommended for continued work is the 

exploration of new and more intuitive 3D sonar data representations. A detailed study of current sonar 

data representations needs to be joined together with high-dimensional space plotting concepts that utilize 

all the capabilities of current 3D rendering hardware and software. A study of this type may prove to be of 

vital interest to the Navy and military in general. Another possibility is to develop a 3D target motion 

analysis system. This system takes the processed sonar data from a sonar system and through combined 

use of the RRA sonar API and knowledge of the sonar environment, statistically calculates the position of 

targets of interest. A system of this sort will have tremendous operational value. 

The final improvement to the RRA sonar API will be to separate the visualization routines from 

the RRA sonar API and to move them to a Visualization API. Many techniques which might be applied 

to a Visualization API are found in a VRML 97 generation program, [Roehl et al., 1997] Chapter 21. It is 

expected that sonar operators and researchers alike will take great advantage of the power, extensibility 

and ubiquity of VRML-based 3D graphics to better visualize and understand 3D sonar environments. 
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APPENDIX A. RRA CODE 

BEAM.JAVA 

/* 
File: 
Compiler: 
*/ 

Beam.java 
jdkl.1.6 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 
import java.lang.*; 

*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday''> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><alu-er^''http://www.sü.nps.navy.rmydis-java-vrrril/rml/navy/nps/r^^ 
* http://www.sÜ.nps.mvy.miydis-java-YtnTymiymvy/nps/rra/Beam.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><arffef^"images/RRAClassffiCTarchy.giP^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa m-er^"images/CoordmateSystem.gif 'xIMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Forms a beam from four rays, propagates the beam and can return 
* a VRML representation of the beam. 
* 
*<dtxb>Explanation:</b> 
*<dd>Beams of energy can be considered to consist of bundles of rays. The 
* energy in a bundle can be shown not to diverge from the bundle. Thus the energy 
* in a bundle is constant and thus the product of the intensity and the 
* area of the bundle perpendicular to direction of propagation is a 
* constant as well. Therefore a beam is a fundemental building block for 
* alobeofasonarpattern.<P> 

*<dtxb>History:</b> 
*<dd> 15Nov97 /Timothy M. Holliday 
*<dd> 17Mar98 /Timothy M. Holliday 
*<dd> 12Apr98 /Timothy M. Holliday 
*<dd> 14Apr98 /Timothy M. Holliday 
*<dd> 21 Apr98 /Timothy M. Holliday 

/New 
/Added HTML comment convention 
/Parameterless Constructors 
/Simplified VRML Routines 
/Fixed Problem with calculateSoundPressureLevel 

*@see Ray 
*@see BeamExampleStatic 
*@see BeamExampleDynamic 
*@see Bottom 
*@see Surface 
*@see Vec3d 
*/ 

public class Beam { 
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public static final int T_L = 0; 
public static final int TIME = 1; 
public static final int NONE = 2; 

I** 
* Constructor for the Beam class. 
• 
* A beam is defined as the volume swept out by 
* four rays as they traverse the ocean environment 
*/ 
public Beam() { 

/* 
* Initialize member variables that require it. 
*/ 
position = new Vec3d(); 

rayl = new Ray(); 
ray2 = newRay(); 
ray3 = newRay(); 
ray4 = new Ray(); 

segmentl = new Vec3d(); 
segment2 = new Vec3d(); 
segment3 = new Vec3d(); 
segment4 = new Vec3d(); 

TL=  newdouble[MAX_POINTS]; 
detectTime = new double[MAX_POINTS]; 
detectEL = new double[MAX_POINTS]; 

} 

/** 
* This method resets all of the beam parameters after 
* instanciation has occurred since reuse is more time 
* efficient than garbage collection and reallocation. 
*/ 
public void reset() { 

rayl.setPosition(position.get(0)>position.get(l),position.get(2)); 
rayl .setElevation(elevation+halfBeamWidthY); 
rayl. setAzimuth(azimuth+halfBeamWidthX); 
rayl .setDeltaTime(deltaTime); 
rayl .setDuration(pulseDuration); 
rayl .setBottom(bottom); 
rayl -setSurface(surface); 
rayl.setSsp(ssp); 
rayl.reset(); 
ray2.setPosition(position.get(0),position.get(l),position.get(2)); 
ray2.setElevation(elevation-halfBeamWidthY); 
ray2.setAzmiuth(azimuth+halfBeamWidtnX); 
ray2.setDeltaTime(deltaTime); 
ray2. setDuration(pulseDuration); 
ray2.setBottom(bottom); 
ray2.setSurface(surface); 
ray2.setSsp(ssp); 
ray2.reset(); 
ray3.setPosition(position.get(0),position.get(l),position.get(2)); 
ray3.setElevation(elevation-halfBeamWidthY); 
ray3.setAzimuth(azimuth-halfBeamWidthX); 
ray3.setDeltaTime(deltaTime); 
ray3.setDuration(pulseDuration); 
ray3.setBottom(bottom); 
ray3.setSurface(surface); 
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ray3.setSsp(ssp); 
ray3.reset(); 
ray4.setPosition(position.get(0),position.get(l),position.get(2)); 
ray4.setElevation(elevation+halffleamWidthY); 
ray4.setAzimuth(azimuth-halffieamWidthX); 
ray4.setDeltaTime(deltaTime); 
ray4.setDuration(pulseDuration); 
ray4.setBottom(bottom); 
ray4.setSurface(surface); 
ray4.setSsp(ssp); 
ray4.reset(); 

//        initialArea = area 1 meter from source 
// = 1 meter * solid angle (in steradians) 
// = lmeter*(2*halfBeamWidthX*pi/180)*(2*halfBeamWidthY*pi/180) 
// = 1.21846972E-003*halfBeamWidtliX*rialfBeamWidtliY 
initialArea = 1.21846972e-3*halffieamWidthX*halffieamWidthY; 
count = -1; 
detectCount = 0; 

} 

I** 

* This method sets the azimuthal angle, which is the angle from 
* the x-axis to the z-axis rotating about the y-axis. 
*/ 
public void setAzimuth(double phi) { 

azimuth = phi; 
} 

/** 
* This method returns the azimuthal angle. 
*/ 
public double getAzimuth() { 

return azimuth; 
} 

/** 
* This method sets the half beam width of the beam in the 
* azimuthal direction. 
*/ 
public void setHalfBeamWidthX(double pHalffieamWidthX) { 

halfBeamWidthX = pHalffieamWidthX; 

} 

/** 
* This method returns the half beam width of the beam in the 
* azimuthal direction. 
*/ 
public double getHalffieamWidthX() { 

return halfBeamWidthX; 
} 

/** 
* This method sets the elevation angle, which is the angle from the 
* y-axis to the x-axis rotating about the z-axis . 
*/ 
public void setElevation(double beta) { 

elevation = beta; 
} 

/** 
* This method returns the elevation angle. 
*/ 
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public double getElevation() { 
return elevation; 

} 

/** 
* This method sets the half beam width of the beam in the 
* elevation direction. 
*/ 
public void setHalffleamWidthY(double pHalffieamWidthY) { 

halffieamWidthY = pHalffieamWidthY; 

} 

/** 
* This method returns the half beam width of the beam in the 
* azimuthal direction. 
*/ 
public double getHalffieamWidthY() { 

return halffieamWidthY; 

} 

/** 
* This method sets the position of the beam. 
*/ 
public void setPosition(double x, double y, double z) { 

position. set(x,y,z); 
} 

/** 
* This method returns the position of the beam. 
*/ 
public Vec3d getPosition() { 

return position; 
} 

I** 
* This method sets the time step in the simulation. 
*/ 
public void setDeltaTime(double pDeltaTime) { 

deltaTime = pDeltaTime; 

} 

/** 
* This method returns the simulation time step. 
*/ 
public double getDeltaTime() { 

return deltaTime; 
} 

/** 
* This method sets the simulation end time. 
• 
* This value is reletive to the start time which is 0.0. 
*/ 
public void setEndTime(double pEndTime) { 

endTime = pEndTime; 

} 

/** 
* This method returns the simulation end time. 
*/ 
public double getEndTime() { 

return endTime; 
} 
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/** 
* This method sets the duration of the sonar pulse. 
* 

* The integer refers to the number of deltaTime increments. 
* currently only 1 or 2 are allowed. 
*/ 
public void setDuration(int duration) { 

pulseDuration = duration; 

} 

/** 
* This method sets the duration of the sonar pulse. 
* 

* The integer refers to the number of deltaTime increments. 
*/ 
public int getDuration() { 

return pulseDuration; 

} 

/** 
* This method sets the handle to the bottom object. 
*/ 
public void setBottom(Bottom pBottom) { 

bottom = pBottom; 

} 

/** 
* This method returns the handle to the bottom object. 
*/ 
public Bottom getBottom() { 

return bottom; 

} 

/** 
* This method sets the handle to the surface object. 
*/ 
public void setSurface(Surface pSurface) { 

surface = pSurface; 

} 

/** 

* This method returns the handle to the surface object. 
*/ 
public Surface getSurface() { 

return surface; 

} 

/** 
* This method sets the handle to the sound speed profde object. 
*/ 
public void setSsp(SSP pSsp) { 

ssp = pSsp; 

/** 
* This method returns the handle to the sound speed profile object. 
*/ 
public SSP getSspO { 

return ssp; 

} 

/** 
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* This method sets BeamNumber. It is used to uniquely 
* identify each beam for ROUTEing in VRML. 
*/ 
public void setBeamNumber(int number) { 

beamNum = number, 
} 

/** 
* This returns BeamNumber. Which is used to uniquely 
* identify each beam for ROUTEing in VRML. 
*/ 
public int getBeamNumber() { 

return beamNum; 
} 

/** 
* This method writes to the console a VRML shape that is 
* the three dimensional representation of the beam that is 
* propagated. 
*/ 
public String staticVRML(int colorChoice, int intensityChoice) { 

String temp =""; 

// Prepend the header information 
temp += "Transform {" + appendage; 
temp +=" rotation 10 0 3.14" + appendage; 
temp += " children" + appendage; 

temp += "Shape {" + appendage; 
temp += " geometry IndexedFaceSet {" + appendage; 
temp += "    coord Coordinate {" + appendage; 
temp += "     point [" + appendage; 
j = 0; 

// Print the positions stored in each ray 
for©=0,j<rayl.getCount();j+= 1) { 

count += 4; 
temp += ray 1 .position© + appendage; 
temp += ray2.position(j) + appendage; 
temp += ray3 .position© + appendage; 
temp += ray4 .position© + appendage; 

} 

temp += "      ]" + appendage; 
temp+="    }" +appendage; 
temp += "   coordhidex [" + appendage; 

// Define the faces of the beam 
for(j=3; j<count; j += 4) { 
temp += ©3) +"" + j +"" + (j+4) +"" + (j+1) +" -1" + appendage; 
temp += (j-3) +"" + (j+1) +"" + (j+2) +"" + ©2) +" -1" + appendage; 
temp += (j-2) + "" + (j+2) + "" + Ö+3) + "" + Ü-1) + " -1" + appendage ; 
temp+=©l)+"" + ©-3) + "" + ©4)+""+j + "-l" + appendage; 

} 
temp += "   ]" + appendage; 

temp +=" color Color{" + appendage; 
temp +="     color[" + appendage; 

// Specify a color for each group of ray positions for each time step 
// that corresponds to the Transmission Loss in dB. 
for©=0;j<rayl.getCount();j+= 1) { 

switch (colorChoice) { 
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case T_L:   PrintVRML.setColorValue(TL[j]); break; 
case TIME: PrintVRML.setColorValue(rayl.getTime(j)); break; 
case NONE: PrintVRML.setColorValue(1.0); break, 

} 
switch (intensityChoice) { 

case T_L:   PrintVRML.setInteiisityValue(TL[j]); break; 
case TIME: PiimtVRML.setIntensityValue(rayl.getTime(j)); break; 
case NONE: PrintVRML.setIntensityValue(1.0); break; 

} 

temp += PrintVRML.getColorO; 
} 
temp += "     ]" + appendage; 
temp +=" }" + appendage; 
temp += " colorlndexf" + appendage; 

// Specify the vertices and their colors for each face specifed above. 
forö'=l;j<rayl.getCount();j++) { 
temp+= (j-l) + "" + (J-l)+"" + (J)+"" + (i)+"-1" + aPPendage'» 
temp+=ö-l)+"" + Ü)+''" + Ö)+"'' + (J-l)+"-l'' + appendage; 
temp += (j-1) +"" + (j) +"" + Ö)+"" + Ö-1)+" -1" + appendage; 
temp += ö-l)+"" + 0) +"" + (]) +"" + 0-1)+" -1" + appendage; 

} 

temp += "   ]" + appendage; 
temp +="   solid FALSE" + appendage; 
temp += "   colorPerVertex TRUE" + appendage; 
temp+=" }" +appendage; 
temp += "}" + appendage; 
temp +="}" + appendage; 
return temp; 

} 

/** 
* This method creates a dynamic VRML string shape that is 
* the three dimensional representation of the beam pulse that is 
* propogated. 
*/ 
public String dynamicVRML() { 

String beamString; 

beamString = "Transform {" + appendage + 
" rotation 1 0 0 3.14" + appendage + 
" children" + appendage + 
"Shape {" + appendage + 
" appearance Appearance {" + appendage + 
"   material DEF PingColor"+beamNum+" Material {" + appendage + 
"      emissiveColor 1.0 0.0 0.0" + appendage + 
"     diffuseColor 0 0 0" + appendage + 
"     shininess 0" + appendage + 
"     ambientlntensity 0.2" + appendage + 
"     transparency .5" + appendage + 
"    }" + appendage + 
" }" +appendage + 
" geometry IndexedFaceSet {" + appendage + 
"   coord DEF Ping"+beamNum+" Coordinate {" + appendage + 
"     point [" + appendage; 

j = 0; 

// Print the first position stored in each ray and make a box corresponding 
// to the pulse duration by printing the trailing edge of the pulse 

beamString = beamString + rayl .position(j) +""; 
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beamString = beamString + ray2.position(j) +""; 
beamString = beamString + ray3.position© +""; 
beamString = beamString + ray4.position© + appendage; 
beamString = beamString + rayl.trailingPosition(j) + ""; 
beamString = beamString + ray2.trailingPosition© + ""; 
beamString = beamString + ray3.trailingPosition© + ""; 
beamString = beamString + ray4.trailingPosition© + appendage; 

beamString = beamString + "     ]" + appendage + 
"    }" +appendage + 
"   coordlndex [" + appendage + 

// Define the faces of the pulse 
"0374 -1" + appendage + 
"0451-1" + appendage + 
"1 5 6 2-1"+appendage+ 
"2 5 7 3-1" +appendage + 
"0 1 2 3-1" +appendage + 
"4567-1" + appendage + 
"   ]" + appendage + 

"   solid FALSE" + appendage + 
" }" +appendage + 
"}" +appendage + 
"}" +appendage + 

"DEF Propagation"+beamNum+" Coordinatelnterpolator {" + appendage + 
" key[" + appendage; 

forO'=0; j<rayl.getCount();j++) { 
beamString = beamString + rayl .normalizedTime(j,endTime*2) + appendage; 

} 
beamString = beamString +" 0.51 1.0 ]" + appendage + 

" keyValue[" + appendage; 
for(i=0;j<rayl.getCount();j++) { 
beamString = beamString + rayl .position© +""; 
beamString = beamString + ray2.position© +""; 
beamString = beamString + ray3.position(j) +""; 
beamString = beamString + fay4 .position©; 
beamString = beamString + rayl.trailingPosition© +""; 
beamString = beamString + ray2.trailingPosition(j) +""; 
beamString = beamString + ray3.trailingPositionG) +""; 
beamString = beamString + ray4.rrailingPosition©; 

} 

beamString = beamString + rayl .position© + ""; 
beamString = beamString + rayl .position© + ""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl.position© +""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl .position© + ""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl .position© + ""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl.position© + ""; 
beamString = beamString + rayl .position© + ""; 
beamString = beamString + rayl .position© +""; 
beamString = beamString + rayl.position© +""; 
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beamString = beamString +" ]" + appendage + 
"}"+ appendage + 

"DEF TLColor"+beamNum+" Colorlnterpolator {" + appendage + 
" key[" + appendage; 

for(j=0; j<rayl.getCount();j-H-) { 
beamString = beamString + rayl.normalizedTime(j,endTime*2); 

} 
beamString = beamString + " 0.51 1.0 ]" + appendage + 

" keyValue[" + appendage; 

// Specify a color for each group of ray positions for each time step 
// that corresponds to the Transmission Loss in dB. 
for (j=0; j<rayl.getCount(); j += 1) { 
if(TL[j]<0){ 

beamString = beamString + "1.000" + appendage; 
} 
else { 
beamString = beamString + (1.0-TL[j]*(.8/125)) +" 0 0" + appendage; 

} 
} 

beamString = beamString + " 0 0 0 0 0 0]" + appendage + 
"}" +appendage + 
"ROUTE Pinglnterval.fraction_changed TO Propagation"+beamNum+".set_fraction" + appendage 

+ 
"ROUTE Propagation"+beamNum+".value_changed TO Ping"+beamNum+".set_point" + 

appendage + 
"ROUTE PingInterval.fraction_changed TO TLColor"+beamNum+".set_fraction" + appendage + 
"ROUTE TLColor"+beamNum+".value_changed TO 

PingColor"+beamNum+".set_emissiveColor" + appendage; 
return beamString; 

} 

/** 
* This method calculates the trajectory of the beam of energy 
* enclosed by the defining rays of the beam tube. It also determines 
* when there is a detection. 
*/ 
public void calculateBeam(Targets targets) { 

durationCount = 0; 
j = 0; 

// Record first point always 
ray 1 .recordPoint(); 
ray2.recordPoint(); 
ray3.recordPoint(); 
ray4.recordPoint(); 
TL[j] = calculateTLO; 
j++; 

while (rayl.getTimeO < endTime) { 

//   Propagate all rays through one time step 
rayl .Propagate(.006); 
ray2.Propagate(.006); 
ray3.Propagate(.006); 
ray4.Propagate(.006): 

//   detect and record target information 
if (targets.isCollision(rayl ,ray2,ray3,ray4)) { 
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detectTime[detectCount]=rayl.getTime(); nM„„10 
detectELfdetectCount] = -2*calculateTL()+10*MaUi.log(targets.getColhsionArea()/4/3.1415); 

} 

durationCount++; 

// If the trailing edge has left the source record all points 
if (durationCount = pulseDuration) { 

rayl.recordPoint(); 
ray2.recordPoint(); 
ray3 .recordPoint(); 
ray4.recordPoint(); 
TL[j] = calculateTLO; 

} 

//   If any ray has reflected then record all of the 
//   points in the beam 
if(rayl.reflectedO|| 

ray2.reflected() || 
ray3.reflected() || 
ray4.reflected()) { 
rayl.recordPoint(); 
ray2.recordPoint(); 
ray3.recordPoint(); 
ray4.recordPoint(); 
TL[j] = calculateTL(); 

} 

//   If the curvature sum reaches the limit, record 
//   all of the points in the beam 
if ( rayl totalCurvature() > CURVATURE_LIMIT || 

ray2.totalCurvature() > CURVATURELIMIT || 
ray3.totalCurvature() > CURVATURELIMIT || 
ray4.totalCurvature() > CURVATUREJJMIT) { 
rayl .recordPoint(); 
ray2.recordPoint(); 
ray3 .recordPoint(); 
ray4.recordPoint(); 
TL[j] = calculateTLO; 
j++; 

} 
} 

// Record last point always 
rayl.recordPointO; 
ray2.recordPoint(); 
ray3 .recordPoint(); 
ray4.recordPoint(); 
TL[j] = calculateTLO; 

targets.resetTargetsO; 

} 

/** 
* This method calculates the trajectory of the beam of energy 
* enclosed by the defining rays of the beam tube. 
*/ 
public void calculateSoundPressureLevel(double field[]0[], 

double deltaRange, 
double deltaDepth, 
double frequency) { 
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double averageX, average Y, averageReflectionPhase, deltaTime, deltaPath; 
double nearestGridX,nearestGridY; 
Vec3d averageNormal = new Vec3d(); 
int count; 

if (deltaRangodeltaDeptn) { 
deltaTime = deltaDepth/2/1500; 
deltaPath = deltaDepth/2; 

} 
eise { 

deltaTime = deltaRange/2/1500; 
deltaPath = deltaRange/2; 

} 

averageNormal.set(rayl .getNormal()); 
averageNonnal.add(ray2.getNormal()); 
averageNonnal.add(ray3.getNormal()); 
averageNormal.add(ray4.getNormal()); 
averageNormal.scale(.25); 

if (averageNormal.get(l) == 0.0) { 
count = (intXdeltaRange/deltaPath); 

elseif(Math.abs(averageNormal.get(0)/averageNormal.get(l))>deltaRange/deltaDepth){ 
count = Math.abs((intXdeltaRange/deltaPath/averageNormal.get(0))); 

} 
eise { 

count = Mam.abs((intXdeltaDepth/deltaPath/averageNormal.get(l))); 

} 

// Propagate a constant x distance for all rays 
while (rayl.getPositionXO < endTime*1500) { 

deltaTime = 0.002; 

//   Propagate all rays through the proper number of time steps 

for(j=0j<lj++){ 
rayl .Propagate(deltaTime); 
ray2.Propagate(deltaTime); 
ray3.Propagate(deltaTime); 
ray4.Propagate(deltaTime);. 

} 

averageX = (rayl .getPositionX(>+Tay2.getPositionX()+Tay3.getPositionX()+ray4.getPositionX())/4; 
averageY = (rayl .getPositionY(>H:ay2.getPositionY(>^-^ay3.getPositionY(>+Tay4.getPositionY())/4; 
segmentl .set(averageX,averageY,0); 
nearestGridX = (double)Math.round(averageX/deltaRange)*deltaRange; 
nearestGridY = (double)Math.round(averageY/deltaDepth)*deltaDepth; 
segment2.set(nearestGridX,nearestGridY50); 

if (inTheBeam(nearestGridX,nearestGridY,0)) { 
averageNormal.set(rayl .getNormal()); 
averageNormal.add(ray2.getNonnal()); 
averageNormal.add(ray3.getNormal()); 
averageNormal.add(ray4.getNonnal()); 
averageNormal.scale(.25); 

// calculate distance from wavefront to storage point for phase correction 
segment2.sub(segmentl); 
a = segment2.dot(averageNormal); 

t 
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// calculate phase correction 
averageReflectionPhase = 

(rayl.getReflectionPhase()+ray2.getReflectior^^ 
averageReflectionPhase += 2*Math.PI*frequency*(rayl .getTime()+a/ssp.C(rayl .getPosition())); 

// calculate the cos and sin of the phase 
b = Math.cos(averageReflectionPhase); 
c = Math.sin(averageReflectionPhase); 

// calculate the magnitude of the pressure 
d = Math.scpt(initialArea/calculateArea()); 

// calculate the x component of the pressure field 
field[(mt)MathTOimd(averageX/deltaRange)][(mt)MathTOund(averageY/deltaDepth)][0]+= d*b; 

field[(mt)MathTOund(averageX/deltaRangeM^ d*c'> 

} 
} 

} 

/** 
* This method returns the total number of detects by the beam 

*/ 
public int getDetectCount() { 

return detectCount; 

} 

/.* 
* This method returns the detect time for a given detect in 
* the beam 
*/ 
public double getDetectTime (int N) { 

return detectTimefN]; 

} 

/** 
* This method returns the echo level of the detected target 
*/ . 
public double getDetectEchoLevel (int N) { 

return detectEL[N]; 

} 

/** 
* This method returns a VRML timer string that contains 
* the appropriate timing information for the beam 
*/ 
public String pingTimerVRML() { 

return "DEF Pinglhterval TimeSensor{" + appendage + 
" cyclelhterval "+(endTime*2) + appendage + 
" loop TRUE" + appendage + 
"}" + appendage; 

} 

/** 
* This is a static method used to indicate whether a line feed is desired 
* at the end of every line. 
* 
* 'true' indicates a linefeed is desired and 'false' indicates that a space 
* is desired" 
*/ 
public static void setAppendLineFeed(boolean pAppendLineFeed) { 

appendLineFeed = pAppendLineFeed; 
Ray.setAppendLineFeed(appendLineFeed); 
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if (appendüneFeed) { 
appendage = LINE_FEED; 

} 
else { 

appendage = SPACE; 
} 

} 

/** 
* This is a static method that returns the current line appendage. 
*/ 
public static boolean getAppendLineFeed(){ 

return appendLüieFeed; 
} 

** Private Section 

private static final String LINE_FEED = "\n"; 
private static final String SPACE = ""; 
private static boolean appendLineFeed = true; 
private static String appendage = LINE_FEED; 

/** 
* This method determines if a grid point is in the beam in the 
* current step. This is used in calculateSoundPressureLevel. 
* If the given point is in the beam then true is returned. 
*/ 
private boolean inTheBeam(double x, double y, double z) { 

Vec3d gridPoint = new Vec3d(x,y,z); 
return inBetween(rayl.getPosition(),gridPoint,ray3.getTrailingPosition())&& 

inBetween(ray2.getPosition(),gridPointjay4.getTrailingPosition()); 

} 

/** 
* This method returns a boolean indicating whether or not the grid 
* point in question is in the sonar pulse. 
*/ 
private boolean inBetween(Vec3d a, Vec3d b, Vec3d c) { 
if (((a.get(0) > b.get(0) && b.get(0) > c.get(0)) ||(c.get(0) > b.get(0) && b.get(0) > a.get(0)))&& 

((a.get(l) > b.get(l) && b.get(l) > c.get(l)) ||(c.get(l) > b.get(l) && b.get(l) > a.get(l)))&& 
((a.get(2) > b.get(2) && b.get(2) > c.get(2)) ||(c.get(2) > b.get(2) && b.get(2) > a.get(2)))) { 

return true; 
} 
else { 
return false; 

} 
} 

/** 
* This method calculates the transmission loss at the current point. 
* 
* The algorithm uses the fact that 
* initialArea x initiallntensity = finalArea x finallhtensity 
* is true for a beam tube. 
*/ 
private double calculateTL(){ 

double Attenuation = 0; 
double Area; 

Attenuation = (rayl .getAbsorption() + ray2.getAbsorption() + 
ray3.getAbsorption() + ray4.getAbsorption())/4; 
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// Calculate area of half of quadralateral 
segmentl .sub(rayl .getPosition(),ray2.getPosition()); 
segment2.sub(ray2.getPositionO,ray3.getPosition()); 
segmentl .cross(segment2); 
Area= .5*segmentl.length(); 

// Calculate area of other half of quadralateral 
segmentl .sub(ray4.getPosition()srayl .getPosition()); 
segment2.sub(ray3.getPositionO,ray4.getPosition()); 
segmentl .cross(segment2); 
Area+= .5*segmentl.length(); 

if(Area<.01){ 
Area = .01; 

} 

Attenuation += 10*Math.log(Area/initialArea)/Math.log(10); 

return Attenuation; 

} 

/** 
* This method calculates the area of the beam front at the current time. 
* It is used exclusively by calculateSoundPressureLevel. 
*/ 
private double calculateArea(){ 

double Area; 

// Calculate area of half of quadralateral 
segmentl .sub(rayl .getPosition()^ay2.getPosition()); 
segment2.sub(ray2.getPosition(),ray3getPosition()); 
segmentl .cross(segment2); 
Area = .5*segmentl.length(); 

// Calculate area of other half of quadralateral 
segmentl .sub(ray4.getPosition(),rayl .getPosition()); 
segment2.sub(ray3.getPositionO,ray4.getPosition()); 
segmentl .cross(segment2); 
Area+= .5*segmentl.length(); 

if(Area<.000001){ 
Area =.000001; 

} 
return Area; 

} 

/* 
* Curvature of beam that is allowed to elapse before a 
* point is recorded. This is for rendering purposes. 
*/ 
private double cmVATURELMTT =.004; 

/* 
* The position of the ray 
*/ 
private Vec3d position = null; 

/* 
* The azimuth of the beam 
*/ 
private double azimuth = 0.0; 

/* 
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* The elevation of the beam 
*/ 
private double elevation = 90.0; 

/* 
* The aziimithal beam half width 
*/ 
private double halffieamWidthX = 1.0; 

/* 
* The elevation beam half width 
*/ 
private double halffleamWidthY = 1.0; 

I** 
* Number of iterations in length that the ray 
* segment is 
*/ 
private int  pulseDuration = 1; 

/* 
* Handle to the bottom object 
*/ 
private Bottom bottom = null; 

/* 
* Handle to the surface object 
*/ 
private Surface surface = null; 

/* 
* Handle to the sound speed profile object 
*/ 
private SSP ssp = null; 

/* 
*The simulation time step 
*/ 
private double deltaTime = 0.006; 

I** 
* Ray one for the current beam 
*/ 
private Ray rayl = null; 

/** 
* Ray two for the current beam 
*/ 
private Ray ray2 = null; 

/** 
* Ray three for the current beam 
*/ 
private Ray  ray3 = null; 

/** 
* Ray four for the current beam 
*/ 
private Ray ray4=null; 

/** 
* Segment one of the wavefront formed by 
* the four rays 
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*/ 
private Vec3d segmentl = null; 

/** 
* Segment two of the wavefront formed by 
* the four rays 
*/ 
private Vec3d segments = null; 

/** 
* Segment three of the wavefront formed by 
* the four rays 
*/ 
private Vec3d segment3 = null; 

/** 
* Segment four of the wavefront formed by 
* the four rays 
*/ 
private Vec3d segment4 = null; 

/** 
* Number of the beam 
*/ 
privateint  beamNum; 

I** 
* Area of the wavefront one meter from the source 
*/ 
private double initialArea = 0;  // area lm from array in sq. meters 

/** 
* Number of points of information that can be saved along 
* the beam path 
*/ 
private static final ist MAX_POINTS = 200; 

/** 
* Array for storing the transmission loss along the beam path 
*/ 
private double[] TL =   null; 

/** 
* Array for storing time that a sonar detect occurs 
*/ 
private doubleQ detectTime = null; 

/** 
* Array for storing the echo level of a sonar detect 
*/ 
private doublet] detectEL = null; 

I** 
* Number of sonar detects that occur 

•*/ 
private int detectCount = 0; 

/** 
* The pulse duration in quanta of deltaTime 
*/ 
private int durationCount; 

/** 
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* End time of the Simulation 
*/ 
private double endTime = 1.0; 

/** 
* Local counters 
*/ 
private int count = -1; 
private int j = 0; 

/** 
* Local doubles 
*/ 
private double a,b,c,d; 

} 

B.       BOTTOM.JAVA 

/* 
File: Bottom.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.sti.nps.navy.mil/~auv/homday"> 

http://www.stl,.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahrer^^ttp://www.sÜ.nps.navy.mil/(iis-java-vnnl/nül/navy/nps/ira/B 
* http:/Avww.stl.nps.mvy.nüydis-java-vnnl/mil/navy/nps/rra/Bottom.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><ahref^"images/RRAClassffierarchy.gif'><MG 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordinateSystem.gif'xIMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>This class acoustically simulates characteristics of 
* the ocean bottom. Currently only a rigid bottom is modeled. 
* 
*<dtxb>Explanation:</b> 
*<dd>Since a ray is the normal vector to a plane wave, rays interact with 
* surfaces the same way that plane waves do. Rays obey Snell's law and 
* the equations of reflection and transmission of wave energy. This model 
* uses vector algebra to determine when the end of a ray has passed through 
* the bottom and to reflect any rays that have penetrated.<P> 
* 
*<dtxb>History:</b> 
*<dd> 8Nov97  /Timothy M. Holliday /New 
*<dd> 18Mar98 /Timothy M. Holliday /Added HTML comment convention 
* 
*@see Surface 
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*@see Vec3d 
*/ 

public class Bottom { 

/** 
* Constructor for the bottom class. The first argument is the bottom type, 
* which has two choices, "noslope' and 'slope'. The first choice is a flat 
* horizontal bottom and the second is a flat horizontal bottom with a steeply 
* rising shelf and a gentle slope to shore. The second argument applies 
* only to the no slope case and is the depth of the bottom. 
*/ 
public Bottom(String bottomType, double depth) { 
if (bottomType.equalsIgnoreCase("noslope")) { 

environment = 1; 
bottomDepth = depth; 

else if (bottomType.equalsIgnoreCase("slope")) { 
environment = 2; 
shallowSlope = (10 - shelfDepth)/(5000 - shelfLine); 
shelfSlope = (shelfDepth - bottomDepth)/(shelfLine - bottomLine); 
planeVector = new Vec3d(); 
temporaryVector = new Vec3d(); 
reflectedRay = new Vec3d(); 
zonelNormal = new Vec3d(-l,l/shallowSlope,0); 
zone2Normal = new Vec3d(-l,l/shelfSlope,0); 
zone3Normal = new Vec3d(0, -1,0); 
zonelNormal.normalize(); 
zone2Normal.normalize(); 

} 
else { 

System.out.prmtln("User defined not implemented yet, defaulting to constant"); 
environment = 1; 

} 
} 

/** 
* This procedure checks to see if the ray path has crossed the bottom 
* during the current time step and returns true if it did. 
*/ 
public boolean intersected(Vec3d Pos) { 

switch (environment) { 
case 1: 
if (Pos.get(l) > bottomDepth) { 
intersected = true; 

} 
else { 
intersected = false; 

} 
break; 

case 2: 
if (Pos.get(0) > shelfLine) { 
if (Pos.get(l) > shelfDepth + (Pos.get(0)- shelfLine)*shallowSlope) { 

intersected = true; 
zone = 1; 

} 
else { 
intersected = false; 

} 
} 
else if (Pos.get(0) > bottomLine) { 

if (Pos.get(l) > bottomDepth + (Pos.get(0)-bottomLine)*shelfSlope) { 
intersected = true; 
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zone = 2; 
} 
else { 
intersected = false; 

} 
} 
else { 

if(Pos.get(l)>bottomDepth) { 
intersected = true; 
zone = 3; 

} 
else { 
intersected = false; 

} 
} 
break; 

} 
return intersected; 

} 

I** 

* This method causes a Snell's Law reflection to occur. 
*/ 
public double reflect(Vec3d Pos,Vec3d normal) { 

switch (environment) { 
case 1: 

double diff; 
diff = Pos.get( 1) - bottomDepth; 
Pos.set( 1 ,bottomDepth-diff); 
normal.set( 1 ,-normal.get( 1)); 
break; 

case 2: 
switch (zone) { 

case 1: 
plane Vector.set(shelfLine,shelfDepth,0); 
plane Vector. sub(Pos); 
intersectedDistance = -zonelNormal.dot(planeVector)/zonelNormal.dot(nonnal); 
reflectedRay.set(normal); 
temporaryVector.scale(2*zonelNonnal.dot(normal),zonelNormal); 
normal.sub(normal,temporaryVector); 
normal.normalizeO; 
reflectedRay. subnormal); 
reflectedRay. scale(intersectedDistance); 
Pos. sub(reflectedRay); 
break; 

case 2: 
planeVector.set(bottomLine,bottomDepth,0); 
plane Vector. sub(Pos); 
intersectedDistance = -zone2Normal.dot(planeVector)/zone2Normal.dot(normal); 
reflectedRay.set(normal); 
temporaryVector.scale(2*zone2Normal.dot(normal),zone2Normal); 
normal. sub(normal,temporaryVector); 
normal.normalize(); 
reflectedRay.sub(normal); 
reflectedRay. scale(intersectedDistance); 
Pos. sub(reflectedRay); 
break; 

case 3: 
planeVector.set(bottomLine;bottomDepth,0); 
planeVector.sub(Pos); 
intersectedDistance = -zone3Normal.dot(planeVector)/zone3Normal.dot(normal); 
reflectedRay. set(normal); 
temporaryVector.scale(2*zone3Normal.dot(nomial),zone3Normal); 

105 



normal.sub(normd,temporaryVector); 
noraial.normalizeO; 
reflectedRay.sub(norrnal); 
reflectedRay.scale(intersectedDistance); 
Pos.sub(reflectedRay); 
break; 

} 
break; 

} 
return 0.0; 

/** 
* This method returns the bottom depth at the given 
* (x^;) coordinate. (Ziomek Coordinate System) 
*/ 
public double depth(double x, double z) { 

switch (environment) { 
case 1: 

return bottomDepth; 
case 2: 
if(x<bottomLine) { 
return bottomDepth; 

else if ((x > bottomLine) && (x < shelfLine)) { 
return bottomDepth + shelfSlope*x; 

} 
else { 
return shelfDepth + shallowSlope*(x-shelfLine); 

} 
} 
return-1; 

} 

/** 
* This method returns the VRML string representing the bottom of the ocean. 
*/ 
public String VRMLBottom() { 

mtminX = -5000; 
intminZ = -5000: 
intmaxX = 5000; 
intmaxZ=500O 

String bottomString = "Transform {" + appendage + 
" rotation 1 0 0 3.14" + appendage + 
" children[" + appendage + 
"Shape {" + appendage + 
" appearance Appearance {" + appendage + 
"   material Material {" + appendage + 
"     diffuseColor .3.15.15" + appendage + 

transparency 0" + appendage + 
"   }" + appendage + 
" }" +appendage + 
" geometry IndexedFaceSet {" + appendage + 
"    solid FALSE" + appendage + 
"   coord Coordinate {" + appendage + 
"     point [" + appendage; 

switch (environment) { 
case 1: „   „ „ , 

bottomString = bottomString +"       "+ maxX +•"+ bottomDepth +""+ maxZ +"," + appendage + 
"+ maxX +""+ bottomDepth +""+ minZ +"," + appendage + 
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break; 
case 2: 

bottomString = bottomString + " 
II M  f  

"+ minX +""+ bottomDepth +""+ rninZ +"," + appendage + 
"+ minX +""+ bottomDepth +""+ maxZ +"" + appendage + 

]" + appendage + 
}" +appendage + 
coordlndex [ 0,1,2,3 ]" + appendage; 

break; 

]" + appendage + 
}" +appendage + 
coordlndex [ 0,1,2,3,-1,3,2,5,4,-1,4,5,6,7,-1 ]" +appendage; 

} 
bottomString = bottomString + " }" + appendage + 

"}" +appendage+ 
"]" + appendage+ 
"}" + appendage+ 
VRMLScales(); 

return bottomString; 
} 

/** 
* This method applies scales to the VRML bottom 
* for the x, y and z directions. 
*/ 
public String VRMLScales() { 

String ts =""; 
ts += PrintVRML.scale("Meters", 

5000,-5000, 
0, -bottomDepth, 5000, 
0,0,1,0, 
10); 

ts += PrintVRML.scale("Meters", 
bottomDepth, 0, 
-5000,0, 5000, 
0,0,1,-1.57, 
2); 

ts += PrintVRML.scale("Meters", 
-5000, 5000, 
-5000, -bottomDepth, 0, 
0,1,0,-1.57, 
10); 

return ts; 
} 

/** 
* This is a static method used to indicate whether a line feed is desired 
* at the end of every line. 
* 
* true' indicates a linefeed is desired and 'false' indicates that a space 
* is desired" 
*/ 
public static void setAppendLineFeed(boolean pAppendLineFeed) { 

appendLineFeed = pAppendLineFeed; 
if (appendLineFeed) { 

appendage = LINE_FEED; 
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} 
else { 

appendage = SPACE; 
} 

} 

I** 
* This is a static method that returns the current line appendage. 
*/ 
public static boolean getAppendLineFeed(){ 

return appendLineFeed; 

} 

** Private Section 

private static final String LINEFEED = "\n"; 
private static final String SPACE = ""; 
private static boolean appendLineFeed = true; 
private static String appendage = LMEJFEED; 

/** standard environment that was initialized */ 
private int  environment =1; 

/** zone within the environment where the ray currently is */ 
private int zone = 0; 

/** depth of the ocean floor in a simple sloped model */ 
private double bottomDepth = 2000; 

/** depth of the ocean shelf in a simple sloped model */ 
private double shelfDepth = 500; 

/** slope of the plane from the shelf to the ocean bottom */ 
private double shelfSlope = 0.0; 

/** slope of the plane from the shore to the ocean shelf */ 
private double shallowSlope = 0.0; 

/** location of the line in the x direction where the ocean shelf ends */ 
private double shelfLine = 2500.0; 

/** location of the line in the x direction where the ocean floor ends */ 
private double bottomLine = 0.0; 

/** distance from ray intersection with the bottom to the current ray position */ 
private double intersectedDistance = 0.0; 

/** vector from a point on the reflection plane to the current ray position */ 
private Vec3d  plane Vector = null; 

/** temporary vector used in calculating the reflection */ 
private Vec3d temporary Vector = null; 

/** the vector expressing the ray that is reflected from the bottom */ 
private Vec3d reflectedRay = null; 

/** the normal to the bottom in zone 1 in the simple sloped model*/ 
private Vec3d zonelNormal = null; 

/** the normal to the bottom in zone 2 in the simple sloped model*/ 
private Vec3d zone2Normal = null; 
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/** the normal to the bottom in zone 3 in the simple sloped model*/ 
private Vec3d zone3Normal = null; 

/** temporary boolean variable indicating if a reflection has occured*/ 
private boolean intersected; 

} 

C.       LOBE.JAVA 

/* 
File: Lobe.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 
import java.util.Date; 

/**. 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.sti.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahrer^"http://www.sti.nps.navy.miydis-java-vrml/miynavy/nps/n-a/Lobe.java"> 
* http:/Avww.sÜ.nps.navy.rrmVdis-java-v^^ 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><ahref^"images/RRAClassffierarchy.gif'><^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa rffef="images/CoordinateSystemgif 'xMG SRC="iiriages/CoordmateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>This class forms a lobe by defining multiple beams. 
* 
*<dtxb>Explanation:</b> 
*<dd>Lobes are emitted in a pattern from an source. Ina 

properly designed active sonar, there is only one main 
lobe. This class simulates that lobe. Lobes are characterized 
by a direction that they are pointed in and typically a 
horizonatal and vertical beamwidth. Within this lobe resides 
the acoustic energy used for detection of distant objects. 
This class subdivides the lobe into beams. This is done to 
keep the wave front of each individual bundle of rays from 
getting significantly larger than the wavelength of the acoustic 
energy. This constraint is so that accuracy is maintained and 
so that many special problems with large area bundle reflection 
can be ignored. Thus, the lobe class divides the lobe into a 
matrix of beams and divides the energy in the lobe among the 
beams. Each beam is then calculated individually using the beam 
class.<P> 

* 

*<dtxb>Future Work:</b> 
*<dd>To optimize the execution time, repeated calculation of duplicate rays 
*   needs to be eliminated. 
» 
*<dtxb>History:</b> 
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*<dd> 29Nov97 /Timothy M. Holliday /New 
*<dd> 17Mar98 yTimothy M. Holliday /Added HTML comment convention 
*<dd> 12Apr98 /Timothy M. Holliday /Parameterless Constructors 
*<dd> 14Apr08 /Timothy M. Holliday /Simplified VRML Routines 

*@see Vec3d 
*/ 

public class Lobe { 

/** 
* Constructor for the lobe class. 
* 
* A lobe is defined as an mxn array of beams. Due to memory and 
* initialization constraints the current limit is 5 by 5. 
*/ 
public Lobe() { 

for(i=0;i<MAX_X_PARTmONS;i-H-) { 
for (j=0;j<MAX_Y_PARTTnONS j++) { 

mainLobe[i][j] = new Beam(); 

) 
} 

} 

/** 
* This method resets all of the lobe parameters after 
* instantiation has occurred since reuse is more time 
* efficient than garbage collection and reallocation. 
• 
*/ 
public void reset() { 

beamWidthX = lobeWidthX/(double)numberXPartition; 
beamWidthY = lobeWidthY/(double)numberYPartition; 
double halfLobeWidthX = lobeWidthX/2.0; 
double halfLobeWidthY = lobeWidthY/2.0; 

for (i=0; i<numberXPartition; i++) { 
for (j=0; j<numberYPartition; j-H-) { 

mainLobe[i][j].setPosition(position.get(0), position.get( 1), position.get(2)); 
mamIx)be[i]ü].setElevation(elevation-r^fLx)beWidmYH<doubleX2*i+l)/2.0*beamWidthY); 
mainLobeti]D].setAzimuth(azimum-halfLobeWidthX+(doubleX2*j+iy2.0*beamWidt^ 
mainI^be[i]ö].setHalfBeamWidthY(beamWidthY/2.0); 
mainLobe[i][j].setHaliBeamWidthX(beamWidthX/2.0); 
mainIx)be[i]0].setDuration(pulseE>uration);  . 
mainLobe[i][j].setEndTime(endTime); 
mainLobe[i]tJ].setBottom(bottom); 
mainLobe[i][j].setSuiface(surface); 
mainLobe[i][j].setSsp(ssp); 
mainLobe[i]lj].setBeamNumber(i*MAX_X_PARTlTIONS+j); 
mainLobe[i][j].reset(); 

} 
} 

} 

/** 
* This method sets the azimuthal angle, which is the angle from 
* the x-axis to the z-axis rotating about the y-axis. 
*/ 
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public void setAzimuth(double phi) { 
azimuth = phi; 

} 

/** 
* This method to gets the Azimuthatl Angle. 
*/ 
public double getAzimuth() { 

return azimuth; 
} 

/** 
* This method to sets the total lobe width 
* in the azimuthal direction reletive to the Ziomek 
* Coordinate System. Argument is in degrees. 
*/ 
public void setLobeWidthX(double pLobeWidthX) { 

lobeWidthX = pLobeWidthX; 
} 

/** 
* • This is an accessor method to get the total lobe width 
* in the azimuthal direction reletive to the Ziomek Coordinate 
* System. Value is in degrees. 
*/ 
public double getLobeWidthX() { 

return lobeWidthX; 
} 

/** 
* This method sets the elevation angle, which is the angle from the 
* y-axis to the x-axis rotating about the z-axis. 
*/ 
public void setElevation(double beta) { 

elevation = beta; 
} 

/** 
* This method returns the elevation angle. 
*/ 
public double getElevation() { 

return elevation; 
} 

/** 
* This is an accessor method to set the total lobe width 
* in the elevation direction reletive to the Ziomek 
* Coordinate System. Argument is in degrees. 
*/ 
public void setLobeWidthY(double pLobeWidthY) { 

lobeWidthY = pLobeWidthY; 
} 

/** 
* This is an accessor method to get the total lobe width 
* in the elevation direction reletive to the Ziomek Coordinate 
* System. Value is in degrees. 
*/ 
public double getLobeWidthY() { 

return lobeWidthY; 
} 

/** 
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* TTiis method sets the lobe positon. 
*/ 
public void setPosition(Vec3d pPosition) { 

position.set(pPosition); 
} 

/** 
* This method returns the lobe position. 
*/ 
public Vec3d getPosition() { 

return position; 
} 

/** 
* This method sets the time step in the simulation. 
*/ 
public void setDeltaTime(double pDeltaTime) { 

deltaTime = pDeltaTime; 

} 

/** 
* This method returns the simulation step time. 
*/ 
public double getDeltaTime() { 

return deltaTime; 
} 

/** 
* This method sets the number of beams in the azimuthal 
* direction that there are in the lobe. 
*/ 
public void setNumberXPartition(int number) { 

numberXPartition = number, 
} 

/** 
* This method returns the number of beams in the azimuthal 
* direction that there are in the lobe. 
*/ 
public int getNumberXPartition() { 

return numberXPartition; 
} 

/** 
* This method sets the number of beams in the elevation 
* direction that there are in the lobe. 
*/ 
public void setNumberYPartition(int number) { 

numberYPartition = number, 
} 

/** 
* This method returns the number of beams in the elevation 
* direction that there are in the lobe. 
*/ 
public int getNumberYPartition() { 

return numberYPartition; 
} 

I** 
* This method sets the simulation end time. 
* 
* This value is reletive to the start time which is 0.0. 
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*/ 
public void setEndTime(double pEndTime) { 

endTime = pEndTime; 
} 

/** 
* This method returns the simulation end time. 
*/ 
public double getEndTime() { 

return endTime; 
} 

I** 

* This is an accessor method. Duration is currently 1 or 2. 
* The integer refers to the number of deltTime increments. 
*/ 
public void setDuration(int duration) { 

pulseDuration = duration; 
} 

/** 
* This is an accessor method. Duration is currently 1 or 2. 
* The integer refers to the number of deltTime increments. 
*/ 
public int getDurationQ { 

return pulseDuration; 
} 

/** 
* This method sets the handle to the bottom object. 
*/ 
public void setBottom(Bottom pBottom) { 

bottom = pBottom; 
} 

I** 
* This method returns the handle to the bottom object. 
*/ 
public Bottom getBottom() { 

return bottom; 
} 

I** 
* This method sets the handle to the surface object. 
*/ 
public void setSurface(Surface pSurface) { 

surface =? pSurface; 
} 

/** 
* This method returns the handle to the surface object. 
*/ 
public Surface getSurface() { 

return surface; 
} 

I** 
* This method sets the handle to the sound speed profile object. 
*/ 
public void setSsp(SSP pSsp) { 

ssp = pSsp; 
} 
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I** 
* This method returns the handle to the sound speed profile object. 
*/ 
public SSP getSsp() { 

return ssp; 
} 

/** 
* This method calculates the Lobe by calling the 
* calculateBeam method for each beam in the lobe. 
*/ 
public void calculateLobe(Targets targets) { 

for (i=0; i<numberYPartition; i++) { 
for (j=0; j<numberXPartition; j++) { 

rnainLobe[i][j].calculateBeam(targets); 

} 
} 

} 

/** 
* This method returns VRML objects that signify detections that 
* were made in the virtual world. 
* 
* The objects are collections of red spheres indicating a detect. 
*/ 
public String detectionVRML() { 

double lAzimuth, Elevation, x, y, z, range, EL; 

String temporaryString = 
" Group {" + appendage+ 
" children [" + appendage; 

for (i=0; i<numberYPartition; i++) { 
for ö=0; j<numberXPartition; j++) { 

for(k=0^<mainLobe[i]o].getDetectCount();k++){ 
lAzimuth = azimuth + beamWidthX/2.0*(2*(double)j+l-(double)numberXPartition); 
lAzimuth »=(3.1415/180); 
lElevation = elevation + beamWidthY/2.0*(2*(double)i+l-(double)numberYPartition); 
Elevation *= (3.1415/180); 
range = mainLobe[i][j].getDetectTime(k)*1500; 

// Convert from Ziomek to VRML coordinate system 
x = position.get(0) + range*Math.sin(Elevation)*Math.cos(lAzimuth); 
y = -(position.get(l) + range*Math.cos(Elevation)); 
z = -(position.get(2) + range*Math.sin(Elevation)*Math.sin(lAzimuth)); 

EL = niainLobe[i][j].getDetecffichoLevel(k)/-200; 
if (EL > 0.9) { 

EL = 0.9; 
} 
elseif(EL<0){ 
EL = 0; 

} 

temporaryString += 
" Transform {" + appendage+ 
" translation "+x+" "+y+" "+z+ appendage + 
" children [" + appendage+ 
" Shape {" + appendage+ 
" appearance Appearance {" + appendage+ 
" material Material {" + appendage+ 
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" emissiveColor 10 0" + appendage+ 
" transparency "+EL+ appendage + 
" }" + appendage+ 
" }" + appendage+ 
" geometry Sphere {radius 20 }" + appendage+ 
" }" + appendage+ 
"]"+ appendage+ 
"}" +appendage; 

} 
} 

} 
return temporaryString +"]}" + appendage; 
} 

I** 

* This method writes the dynamic VRML representation of the Lobe by calling the 
* VRMLBeam routine for each beam. 
* Also Writes out a Viewpoint node. 
*/ 
public String dynamicVRML() { 

String lobeString = "Viewpoint {" + appendage + 
" position" + (position.get(0)-100) +""+ -position.get(l) +""+ (position.get(2)-20)+"" + appendage + 
" orientation 0-10" + ((90-azimuth)*3.14/180)+"" + appendage + 
" description V'BeamV " + appendage+ 
"}" +appendage; 

lobeString = lobeString + mainLobe[0][0].pmgTimerVRML(); 

Date timecheck = new Date(); 
for (i=0; i<numberYPartition; i++) { 

for (j=0; j<numberXPartition; j++) { 
lobeString = lobeString + mainLobe[i][j].dynamicVRML(); 

} 
} 
Date timecheck2 = new Date(); 
lobeString = lobeString + "#** + timecheck +"" + appendage; 
lobeString = lobeString + "# " + timecheck2 +"" + appendage; 
return lobeString; 

} 

/** 
* This method writes the static VRML representation of the Lobe by calling the 
* VRMLBeam routine for each beam. 
*/ 
public String staticVRML(int colorMap, int intensityMap) { 

String temp =""; 

for (i=0; i<numberYPartition; i++) { 
for(j=0;j<numberXPartition;j++) { 
temp += mainLobe[i][j].staticVRML( colorMap, intensityMap); 

} 
} 
return temp; 

} 

/** 
* This is a static method used to indicate whether a line feed is desired 
* at the end of every line. 
* 

true' indicates a linefeed is desired and 'false' indicates that a space 
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* is desired" 
*/ 
public static void setAppendLineFeed(boolean pAppendLineFeed) { 

appendLineFeed = pAppendLineFeed; 
Beam.setAppendLineFeed(appendLineFeed); 
if (appendLineFeed) { 

appendage = LINE_FEED; 

} 
else { 

appendage = SPACE; 
} 

} 

/** 
* This is a static method that returns the current line appendage. 
*/ 
public static boolean getAppendLineFeed(){ 

return appendLineFeed; 

} 

** Private Section 

private static final Siring LINEJFEED = "\n"; 
private static final String SPACE = ""; 
private static boolean appendLineFeed = true; 
private static String appendage = LINE_FEED; 

private static final int MAX_X_PARTITIONS = 5; 
private static final int MAX_Y_PARTITIONS = 5; 

private Vec3d position = new Vec3d(); 
private double azimuth = 0.0; 
private double elevation = 90.0; 
private double lobeWidthX = 1.0; 
private double lobeWidthY = 1.0; 
private double beamWidthX = 1.0; 
private double beamWidthY = 1.0; 
private int numberXPartition = 1; 
private int numberYPartition = 1; 
private int pulseDuration = 1; 
private Bottom bottom = null; 
private Surface surface = null; 
private SSP ssp = null; 
private double deltaTime = 0.006; 
private double endTime; 

private Beam[][]        mainLobe = new Beam[MAX_X_PARTrTIONS][MAX_Y_PARTITIONS]; 
privateint i,j, k; 

} 

D.       PRINTVRML.JAVA 

/* 
File: PrintVRML.java 
Compiler: 
*/ 

jdkl.1.6 

package mil.navy.nps.rra; 
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import mil.navy.nps.ira.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~<auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahref^"http://www.stl.nps.navy.:m^ 
* http://www.stl.nps.navy.nnU/dis-java-vTral/rrn^ 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><ahref="images/RRAClassHierarchy.gif'><MGSRC=,'images/RRAClassffierarchyButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordiiiateSystem.gif'xMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dt><b>Summary:</b> 
*<dd>Contains static methods that return standard VRML strings. 
* 
*<dtxb>Explanation:</b> 
*<dd>Creates strings in VRML for header, directionalLight and 
* navigationInfo.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Apr98 /Timothy M. Holliday /New 
*<dd> 14May98 /Timothy M. Holliday /Added color and intensity schemes 
*<dd> 18May98 /Timothy M. Holliday   /Added VRML colorBarView and textNode 
* 
*/ 

pubhc class PrintVRML { 

public static final int RAINBOW = 1; 
public static final int RED = 2; 
public static final int GREEN = 3; 
public static final int BLUE = 4; 
public static final hit TRICOLOR = 5; 
public static final int CONSTANT = 6; 
public static final int LINEAR = 7; 
public static final String HORIZONTAL ="001 0"; 
pubhc static final String VERTICAL ="001 1.57"; 
public static final String RIGHT = "\"END\""; 
public static final String CENTER = "\"MIDDLE\""; 
public static final String LEFT = TBEGINV'"; 

pubhc static String header() { 
return "#VRML V2.0 utf8" + appendage; 

} 

public static String directionalLight() { 
return "DirectionalLight {"+appendage+ 

" ambienüntensity 0"+appendage+ 
" color 1 1 l"+appendage+ 
" direction 0 -1 0"+appendage+ 
" intensity l"+appendage+ 
" on TRUE"+appendage+ 
"}"+appendage; 

} 

pubhc static String navigationInfo() { 
return "NavigatiorJhfo {"+appendage+ 

117 



" type        [\"FLY\"\"EXAMINE\"]"+appendage+ 
" speed      50"+appendage+ 
" headlight TRUE"+appendage+ 
" visibilityLimit50000"+appendage+ 
"}"+appendage; 

public static String printLegendView(String title, 
String infol, 
String info2, 
String info3, 
String infc4, 
String info5, 
double x, 
double y, 
double z) { 

String temp = appendage; 
temp += "EXTERNPROTO protoLegendViewpointf" +appendage; 
temp += "eventin     SFBool    set_bind" +appendage; 
temp += "exposedField SFFloat   fieldOfView  " +appendage; 
temp += "exposedField SFBool    jump      " +appendage; 
temp +=■ "exposedField SFRotation orientation" +appendage; 
temp+= "exposedField SFVec3f   position    "+appendage; 
temp += "field       SFString  description" +appendage; 
temp += "eventOut    SFTime    bindTime" +appendage; 
temp += "eventOut    SFBool    isBound" +appendage; 
temp+= "field       MFString Titie  "+appendage; 
temp+= "field       MFString   info "+appendage; 
temp += "] Y'protoLegendViewpointwrlV" +appendage; 

temp += "protoLegendViewpoint{" +appendage; 
temp += "TiÜe [\""+ tide +"\"]" +appendage; 
temp += "position "+x+" "+y+" "+z+"" +appendage; 
temp += "mfo [\"" +infol+ "V V" +info2+ "\" V" +info3+ "V" +appendage; 
temp += " V" +info4+ "\" \"" +info5+ "\"]" +appendage; 
temp +="}" +appendage; 
return temp; 

} 

public static String protoColorBar(String vLabel, 
String hLabel, 
String vSubLabell, 
String vSubLabel2) { 

String temp = appendage; 
temp += "PROTO protoColorBarf" +appendage; 
temp+="] {"+appendage; 

temp += "Transform {"+appendage; 
temp += "translation 2 1 4.5"+appendage; 
temp += "children ["+appendage; 
temp += colorBar(vLabel,hLabel,vSubLabell,vSubLabel2); 
temp +="]" +appendage; 
temp +="}" +appendage; 
temp +="}" +appendage; 
return temp; 

} 

public static String colorBarView(String title, 
double x, 
double y, 
double z, 
double xAxis, 
double yAxis, 
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double zAxis, 
double theta) { 

String temp = Transform {" +appendage; 
temp += "translation "+x+" "+y+" !'+z+"" +appendage; 
temp += "rotation "+xAxis+" "+yAxis+" "+zAxis+" "+theta +appendage; 
temp += "children [" +appendage; 
temp += "Viewpoint^ +appendage; 
temp += "description \""+ title +"\"" +appendage; 
temp +="}" +appendage; 
temp += "protoColorBar {}"; 
temp +="]" +appendage; 
temp += "}" +appendage; 
return temp; 

} 

public static void setAppendLineFeed(boolean pAppendLineFeed) { 
appendLineFeed = pAppendLineFeed; 
Ray.setAppendLineFeed(appendLineFeed); 
if (appendLineFeed) { 

appendage = LINE_FEED; 
} 
else { 

appendage = SPACE; 
} 

} 

public static boolean getAppendLineFeed(){ 
return appendLineFeed; 

} 

public static void setColorScheme(int scheme) { 
colorMaximum = 1; 
colorMinimum = 0; 
colorScheme = scheme; 
colorDelta= 1; 
colorSubDelta = colorDelta/3; 

} 

public static void setColorScheme(int scheme, double maximum, double minimum) 
colorMaximum = maximum; 
colorMinimum = minimum; 
colorScheme = scheme; 
colorDelta = maximum - rninimum; 
colorSubDelta = colorDelta/3; 

} 

public static void setColorScheme(int scheme, 
double maximum, 
double detection, 
double counterDetection, 
double minimum) { 

colorScheme = scheme; 
colorMaximum = maximum; 
colorDetection = detection; 
colorCounterDetection = counterDetection; 
colcrMinimum = minimum; 
colorDelta = maximum - minimum; 

} 

public static void setColorValue(double value) { 
if ((colorScheme = RAINBOW)||(colorScheme = TRICOLOR)) { 

color Value = (value^olorMinimum)/colorDelta; 
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if (colorValue<0.0) { 
colorValue = 0.0; 

} 
elseif(colorValue>1.0){ 

colorValue = 1.0; 
} 

//else if (colorScheme == TRICOLOR) { 
// colorValue = value; 
//} 
else { 

//     System.out.println("#PrintVRML: setColorValue: not a valid scheme"); 
colorValue = 1; 

} 
} 

public static void setintensityScheme(int scheme) { 
intensityScheme = scheme; 
intensiryMaximum = 1; 
mtensityMinimum = 0; 
intensityDelta = 1; 

public static void setmtensityScheme(int scheme, double maximum, double minimum) { 
intensityScheme = scheme; 
intensiryMaximum = maximum; 
mtensityMinimum = minimum; 
intensityDelta = maximum - minimum; 

} 

public static void setmtensityValue(double value) { 
if (intensityScheme = LINEAR) { 

intensity Value = (value-mtensityMinimum)/intensityDelta; 
if (intensity Value < 0.0) { 

intensityValue = 0.0; 
} 
else if(intensityValue > 1.0) { 

intensity Value = 1.0; 
} 

else if (intensityScheme == CONSTANT) { 
intensityValue =1.0; 

} 

System.out.println("#PrintVRML: setlntensityValue: not a valid scheme"); 
intensity Value = 1.0; 

} 
} 

public static String getColor() { 
double red = 0; 
double green = 0; 
double blue = 0; 

if (colorScheme == RAINBOW) { 
if (colorValue > .66667) { 
red = (colorValue - .66667)/.33333; 
green = 1-red; 
blue = 0.0; 

} 
else if (colorValue > .33333) { 

red =0.0; 
green = (colorValue - .33333)/.33333; 
blue = 1-green; 
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} 
else { 

green = 0.0; 
blue = colorValue/.33333; 
red = 1-blue; 

} 
} 
else if (colorScheme == RED) { 

red =1.0; 
green = 0.0; 
blue = 0.0; 

} 
else if (colorScheme == GREEN) { 

red = 0.0; 
green = 1.0; 
blue = 0.0; 

} 
else if (colorScheme == BLUE) { 

red = 0.0; 
green = 0.0; 
blue =1.0; 

} 
else if (colorScheme == TRICOLOR) { 
if (colorValue > (colorDetectionKX>lorMinimurn)/colorDelta) { 
red =1.0; 
green = 0.0; 
blue = 0.0; 

} 
else if (colorValue > (colorCoimterDetection^olorMinimum)/colorE)elta) { 
red = 0.0; 
green = 1.0; 
blue = 0.0; 

} 
else { 
red = 0.0; 
green = 0.0; 
blue =1.0; 

} 
} 

red *= intensityValue; 
green *= intensityValue; 
blue *= intensityValue; 

return (StringXred+" "+green+" "+blue+appendage); 

} 

public static String colorBar(String vLabel, 
Siring hLabel, 
String detectionLabel, 
String counterDetectionLabel) { 

double i = 0; 
double j = 0; 
String ts = ""; 

switch (colorScheme) { 
case RAINBOW: 
ts += textNode(VERTICAL,-.75,0,0, vLabel, .25,.25,CENTER); 
ts+= textNode(HORIZONTAL,.6, .4, 0, n"+colorMaximum, .15,.15,LEFT); 
ts += textNode(HORIZONTAL,.6, -A, 0, ""+colorMinimum, .15,.15,LEFT); 
break; 
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case TRICOLOR: 
ts+= textNode(HORIZONTAL;-.6, .5+(colorDetection-colorMaximum)/colorDelta, 

0, detectionLabel, .15,.15,RIGHT); 
ts += textNode(HORIZONTAL,-.6, .5+(colorCoi]nterDetection-colorMaximum)/colorDelta, 

0, covmterDetectionLabel, .15,.15,RIGHT); 
ts += textNode(HORIZONTAL,.6, .5,0, ""+colorMaximum, .15,.15,LEFT); 
ts += textNode(HORrZONTAL,.6, .5H<colorDetection^olorMaximum)/colorDelta; 

0, ""H-colorDetection, .15,.15,LEFT); 
ts += textNcde(HORIZONTAL,.6, .5-KcoloiCounterDetection-colorMaximum)/colorDelta, 

0, ""+colorCounterDetection, .15,.15,LEFT); 
ts += textNode(HORIZONTAL,.6, -.5,0, ""HxolorMmimum, .15,.15,LEFT); 
break; 

case RED: 
ts += textNode(VERTICAL,-.75, 0,0, vLabel, .25,.25,CENTER); 
break; 

case BLUE: 
ts += textNode{VERTICAL,-.75,0,0, vLabel, .25,.25,CENTER); 
break; 

case GREEN: 
ts += textNode(VERTICAL,-.75,0, 0, vLabel, .25,.25,CENTER); 
break; 

} 

switch (intensityScheme) { 
case LINEAR: 
ts += textNode(HOR]ZONTAL,0 , .75, 0, bLabel, .25,.25,CENTER); 
ts += textNode(VERTICAL,-.4, -.6,0, ""+intensityMaximum, .15,. 15,RIGHT); 
ts += textNode(VERTICAL,.4, -.6, 0, ""+intensityMinimum, .15,.15,RIGHT); 
break; 

case CONSTANT: 
ts += textNode(HORIZONTAL,0 , .75,0, bLabel, .25,.25,CENTER); 
break; 

} 

ts+= "Shape {"+appendage; 
ts+= "geometry IndexedFaceSet {"+appendage; 
ts += "coord Coordinate {"+appendage; 
ts += "point ["+appendage; 
for(i=0;i<20;i++){ 
for(j=0-j<20j++){ 

ts += (-.5+(double)i/20) +""; 
ts += (.5-(double)j/20) +" 0.0"+appendage; 

} 
} 
ts += "]"+appendage; 
ts +="} "+appendage; 

ts += "coordfcidex ["+appendage; 
for (i=0;i<19;i++) { 
forö=0'j<19y++){ 
ts+= (intXJ*20+i)+" "-Kint)((j+l)*20+i)+" "-KixitXCJ+l )*20+i+l)+" "-Kint)(j*2CH-i+l)+" -l"+appendage; 

} 
} 
ts += "]"+appendage; 

ts += "color Color {"+appendage; 
ts += "color ["+appendage; 
for(i=0;i<20;i++){ 
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for(j=0a<20a++){ 
seÜntensityValue(intensityMaximum-(double)i/20*iiitensityDelta); 
setColorValue(colorMaximum-(double)j/20*colorDelta); 
ts += getColorO; 

} 
} 
ts += "]"+appendage; 
ts += "} "+appendage; 

ts += "colorüidex ["+appendage; 
for(i=0;i<19;i++){ 
for(j=0ü<19a++){ 
ts += (intXJ*20i-i>f" "+<intX(j+l)*20+i>f" "+(intX(j+l)*20+i+l>f" "+(int)(j*20+i+l)f" -l"+appendage; 

} 
} 
ts += "]"+appendage; 
ts += "solid FALSE"+appendage; 
ts += "colorPerVertex TRUE"+appendage; 

ts+= "}"+appendage; 
ts+= "}"+appendage; 
.return ts; 

} 
public static String scale(String label, 

double maximum, 
double minimum, 
double x, 
double y, 
double z, 
double xAxis, 
double yAxis, 
double zAxis, 
double theta, 
int divisions) { 

inti=0; 
String value =""; 
String ts = ""; 
ts +="Transform {"+appendage; 
ts +="translation "+x+" "+y+" "+z+appendage; 
ts +="rotation "+xAxis+" "+yAxis+" "+zAxis+" "+theta+appendage; 
ts +="children ["+appendage; 
ts +="Shape {"+appendage; 
ts +="appearance Appearance .{"+appendage; 
ts +="material Material {"+appendage; 
ts+="emissiveColor 1.1 l"+appendage; 
ts +="} "+appendage; 
ts +="} "+appendage; 
ts += "geometry IndexedLineSet{"+appendage; 
ts +="coord Coordinate {"+appendage; 
ts +="point ["+appendage; 
ts +=""+minimum+" 0 0"+appendage; 
ts +=""-i-maximum+" 0 0"+appendage; 
ts +="]"+appendage; 
ts +="} "+appendage; 

ts +="coordlhdex ["+appendage; 
ts +="0 1 -l"+appendage; 
ts +="]"+appendage; 
ts +="} "+appendage; 
ts +="} "+appendage; 

for (i=0; i<=divisions;i-H-) { 
if (minimum > maximum) { 
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value = ""4^intXmaximum+i*((nünimum-niaximum)/divisions)); 

} 
else { 

value = ""+<intXniiiümum+i*((maximum-nunimum)/divisions)); 

} 
ts +=textNode(VERTICAL, 

muümum+(maximum-nüiümum)*(double)i/(double)divisions, 
0, 
0, 
value, 
Math.abs(((maximum-nunimum)/4.0)/divisions), 
Math.abs(((maximiim-miniinum)/4.0)/divisions), 
RIGHT); 

} 
ts +=textNode(HORIZONTAL, 

(minimuni-tTnaximum)/2.0, 
-Math.abs((iniiümum-maximum)/divisions), 
0, 
label, 
Math.abs(((maximum-nüiiimum)/2.0)/divisions), 
Math.abs(((maximum-minimum)/2.0)/divisions), 
CENTER); 

ts +="]"+appendage; 
ts+="}"+appendage; 
return ts; 

} 

«a*********************************************************** 

** Private Section 

private static String textNode(String orientation, 
double x, 
double y, 
double z, 
String text, 
double size, 
double space, 
String justify) { 

String ts = "Transform {"+appendage; 
ts += "translation "+x+" "+y+" "+z+appendage; 
ts += "rotation "+orientation+appendage; 
ts += "children Shape {"+appendage; 
ts+= "appearance Appearance {material Material { emissiveColor 1 1 l}}"+appendage; 
ts += "geometry Text {"+appendage; 
ts += "string \" "+text+" V "+appendage; 
ts += "fontStyle FontStyle {"+appendage; 
ts += "size "+size+appendage; 
ts += "spacing "+space+appendage; 
ts += "justify "+justify+appendage; 
ts += "} "+appendage; 
ts +="} "+appendage; 
ts += "}} "+appendage; 
return ts; 

} 

private static final String LINE_FEED = "\n"; 
private static final String SPACE = ""; 
private static boolean appendLineFeed = true; 
private static String appendage = LINE_FEED; 
private static int colorScheme = 0; 
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private static double colorMaximum = 0.0; 
private static double colorMinimum = 0.0; 
private static double colorDelta = 0.0; 
private static double colorSubDelta = 0.0; 
private static double colorDetection = 0.0; 
private static double colorCounterDetection = 0.0; 
private static double colorValue = 0.0; 
private static int intensityScheme = 0; 
private static double intensityMaximum = 0.0; 
private static double intensityMinimum = 0.0; 
private static double inteusityDelta = 0.0; 
private static double intensityValue = 0.0; 

} 

E.        RAY.JAVA 

/* 
File: Ray.java 
Compiler: jdkl.1.3 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 
import java.lang.Math; 

I** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A 

HREF='http://dubhe.cc.nps.navy.mil/~mihollid'>http://dubhe.cc.nps.navy.miy~tmholüd</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahrer="http://\vvvw.sÜ.nps.navy.mil/dis-java-vnn]/mil/navy/nps/rra/Ray.java"> 

http://vvTvw.sti.nps.navy.rail/dis-java-vnnl/mu7navy/nps/rra/Ray .java</a> * 

*<dtxb>Hierarchy Diagram:<yb> 
*<dd><ahref=''images/RRAClassffierarchy.gif><^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href=nimages/CoordinateSystem.gif'><lMG SRC=''images/CoordmateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>This class incorporates the RRA (recursive ray acoustics) 
* algorithm from Professor Ziomek. 
* 
*<dtxb>Explanation:</b> 
*<dd>Any wave front can be decomposed into a set of plane waves 
* with the plane waves travelling in the direction of the normal 
* to the wave front. The normal for each plane wave is defined by 
* the normal to the wave front at the point where the front 
* and the plane wave touch This class uses the ray theory solution 
* to the linear acoustic wave equation to simulate one ray from 
* the surface of a wavefront as it propagetes through the ocean.<P> 
* 
*<dtxb>History:</b> 
*<dd> 1NOV97  /Timothy M. Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 
*<dd> 12Apr98 /Timothy M. Holliday /Parameterless Constructors 
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*<dd> 14Apr08 /Timothy M. Holliday /Simplified VRML Routines 
* 
*@see Surface 
*@see Bottom 
*@see Beam 
*@see ExampleRay 
*@see Vec3d 
*/ 

public class Ray { 

/** 
* Constructor for the Ray class. Constructs a fixed size structure to trace a 
* ray of acoustic energy through the ocean. 
*/ 
public Ray () { 

/* 
* Initialize the member variables that require it 
*/ 
position = new Vec3d(); 
normal = new Vec3d(); 
startPosition = new Vec3d(); 
prevPosition = new Vec3d(); 
prevNormal = new Vec3d(); 
deltaPosition = new Vec3d(); 
starPosition = new Vec3d(); 
trailingPosition = new Vec3d(); 

inti; 
for(i=0;i<MAX_POBSrrS;i++) { 
rayPath[i] = new Vec3d(); 
trailingPath[i] = new Vec3d(); 

} 
} 

/** 
* This method resets all of the ray parameters after 
* instanciation has occurred since reuse is more time 
* efficient than garbabage collection and reallocation. 
*/ 
public void reset() { 

/** 
* Initialize the member variables that require it 
*/ 
prevPosition.set(position); 
setNormal(); 
prevNormal.set(normal); 
deltaPosition.set(position); 
starPosition. set(position); 
trailingPosition. set(position); 
time = 0.0; 
pathLength = 0.0; 
reflectionPhase = 0.0; 
pointCount= 0; 
reflection = false; 
absorbtion = 0.0; 
totalCurve = 0.0; 

} 

/** 
* This method takes the direction cosines of the ray 
* and forms the vector normal to the wavefront. 
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*/ 
private void setNormal() { 

double u,v,w, 

u = (double)(Math.sin(elevation*Math.PI/180) * Math.cos(azimuth*Math H/180))- 
v = (doubleXMath.cos(elevation*Math.PI/l 80)); 
w= (doubleXMath.sin(elevation*Math.PF180) * Math.sin(azimuth*Math.PI/180)); 

normal.set(u,v,w); 
} 

/** 
* This method returns the normal vector to the wavefront 
*/ 
public Vec3d getNormal() { 

return normal; 
} 

/** 

* This method sets the azimuthal angle, which is the angle from the x-axis 
* to the z-axis rotating about the y-axis 
*/ 
public void setAzimuth(double phi) { 

azimuth = phi; 
} 

/** 
* This method returns the azimuthal angle 
*/ 
public double getAzimuth() { 

return azimuth; 
} 

/** 
* This method sets the elevation angle, which is the angle from the y-axis 
* to the x-axis rotating about the z-axis. 
*/ 
public void setElevation(double beta) { 

elevation = beta; 
} 

/** 
* This method returns the elevation angle 
*/ 
public double getElevation() { 

return elevation; 
} 

/** 
* This method sets the position of the ray 
*/ 
public void setPosition(double x, double y, double z) { 

startPosition. set(x,y,z); 
position. set(x,y,z); 
prevPosition.set(x,y,z); 
time = deltaTime; 

} 

/** 
* This method gets the position of the ray 
*/ 
public Vec3d getPosition() { 

return position; 
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} 

/** 
* This method is used to change the time step of the ray after 

* instantiation. 
*/ 
public void setDeltaTime(double deltaTune) { 

time = deltaTime; 

} 

/** 
* This method is returns the time step of the ray. 

*/ 
public double getDeltaTime() { 

return time; 

} 

/' 
* This method sets the ping duration. Duration is currently 1 or 2. 
* The integer refers to the number of deltaTime increments. 

*/ 
public void setDuration(int duration) { 

pulseDuration = duration; 

} 

* This returns the ping duration. Duration is currently 1 or 2. 
* The integer refers to the number of deltTime increments. 

*/ 
public int getDurationO { 

return pulseDuration; 

} 

/** 
* This method sets the handle to the bottom object. 

*/ 
public void setBottom(BottompBottom) { 

bottom = pBottom; 

} 

/** 
* This method returns the handle to the bottom object. 

*/ 
public Bottom getBottom() { 

return bottom; 

} 

I** 
* This method sets the handle to the surface object. 

*/ -• w 
public void setSurface(Surface pSurface) { 

surface = pSurface; 

} 

* This method returns the handle to the surface object. 

*/ 
public Surface getSurface() { 

return surface; 

* This method sets the handle to the sound speed profile object. 
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*/ 
public void setSsp(SSP pSsp) { 

ssp = pSsp; 
} 

/** 

* This method returns the handle to the sound speed profile object. 
*/ 
public SSP getSsp() { 

return ssp; 
} 

/** 
* This method returns the phase change of the wavefront 
*/ 
public double getReflectionPhase() { 

return reflectionPhase; 
} 

/** 
* This method returns the x-component of the position 
* of the wavefront 
*/ 
public double getPositionX() { 

return position.get(0); 
} 

/** 
* This method returns the y-component of the position 
* of the wavefront 
*/ 
public double getPositionY() { 

return position.get( 1); 
} 

/** 
* This method returns the z-component of the position 
* of the wavefront 
*/ 
public double getPositionZ() { 

return position.get(2); 
} 

/** 
* This method returns the position of the trailing edge of 
* the wavefront 
*/ 
public Vec3d getTrailingPosition() { 

return trailingPosition; 
} 

/** 
* This method returns the current simulation time. 
*/ 
public double getTime() { 

return time; 
} 

/** 
* This method returns a saved simulation time. 
*/ 
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public double getTime(int index) { 
return rayTimefindex]; 

} 

I** 
* This method causes the ray to propagate one timestep into the future. 
*/ 
public void Propagate(double timeStep) { 

deltaTime = timeStep; 
nextPositionO; 
nextNormal(); 
nextTimeandpathLengthO; 

} 

/** 
* This method returns the current number of points stored for the ray. 
*/ 
public int getCount() { 

return pointCount; 
} 

/** 
* This method returns the current total relaxation absorbtion in dB. 
*/ 
public double getAbsorption() { 

return absorbtion; 
} 

I** 
* This method returns whether or not the ray has been reflected in 
* the most recent time step. 
*/ 
public boolean reflected() { 

return reflection; 
} 

/** 
* This method forces a recording of the current ray position. It also forces the 
* total curvature of the ray since the last recorded point to 0.0. 
*/ 
public void recordPoint() { 

rayPath[pointCount].set(position); 

if (pulseDuration == 2) { 
trailingPath[pointCount].set(trailingPosition); 

} 
else { 
trailingPath[pointCount].set(prevPosition); 

rayTime[pointCount] = time; 
pointCount++; 
totalCurve = 0.0; 

} 

/** 
* This returns the total curvature of the ray path since the last recorded point. 

* The curvature of a small segment of curve can be approximated by the curvature 
* of a circle which is the change in angular position around the circle divided 
* by the pathlengüi change. K = deltaTheta/deltaPathLength. Thus total curvature 
* is the sum of the curvatures of the small segments along a ray trajectory. 
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*/ 
public double totalCurvature() { 

return totalCurve; 
} 

/** 
* This method returns the requested position as a String. 
*/ 
public String position(int N) { 

return (int)rayPath[N].get(0) +"" + 
(int)rayPath[N].get(l) + "" + 
(mt>ayPath[N].get(2) + appendage; 

} 

'** / 
* This method returns the requested trailing edge of the ray as a String. 
*/ 
public String trailingPosition(int N) { 

return (int)trailingPath[N].get(0) +"" + 
(int)trailingPath[N].get(l)+"" + 
(int)trailingPath[N].get(2) + appendage; 

} 

/** 
* This method returns the requested normalized time as a string. 
*/ 
public String normalizedTime(intN, double endtime) { 

return Math.floor(100*rayTime[N]/endtime)/100 + appendage; 
} 

/** 
* This is a static method used to indicate whether a line feed is desired 
* at the end of every line. 
* 
* 'true' indicates a linefeed is desired and 'false' indicates that a space 
* is desired" 
*/ 
public static void setAppendLineFeed(boolean pAppendLineFeed) { 

appendLineFeed = pAppendLineFeed; 
if (appendLineFeed) { 

appendage = LINE_FEED; 
} 
else { 

appendage = SPACE; 
} 

} 

/** 
* This is a static method that returns the current line appendage. 
*/ 
public static boolean getAppendLineFeed(){ 

return appendLineFeed; 

** 
** Beginning of private section 
** 
************************************************************************/ 

private static final String LINE_FEED = "W; 
private static final String SPACE = ""; 
private static boolean appendLineFeed = true; 
private static String appendage = LINE_FEED; 
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/* 
* This method calculates the position of the ray after the time step. 
*/ 
private void nextPosition() { 

// save trailing position depending on duration 
if (pulseDuration == 2) { 
trailingPosition.set(prevPosition); 

} 
else { 
trailingPosition. set(position); 

} 

prevPosition. set(position); 
prevdeltaArc = deltaArc; 
prevNormal.set(normal); 
position.add(deltaPosition()); 
reflection = false; 

if (bottom.intersected(position)) { 
reflectionPhase += bottom.reflect(position, prevNormal); 
reflection = true; 

} 

if (surface.intersected(position)) { 
reflectionPhase += surface.reflect(position,prevNormal); 
reflection = true; 

} 
} 

/* 
* This method calculates the normal to the wavefront at the position of the ray 
* after the time step using the ziomek formula. 
*/ 
private void nextNormal() { 

updatestarPositionQ; 
deltaArc = deltaTime*ssp.C(position); 
terml.scale(ssp.C(position)/ssp.C(prevPosition),prevNonnal); 
term2.scale(deltaTime,ssp.gradC(starPosition)); 
totalCurve += term2.1ength(); 
nonnal.sub(prevNormal,term2); 

} 

/* 
* This method the calcultes the total elapsed time and length of path travelled. 
*/ 
private void nextTimeandpathLength() { 
time += deltaTime; 
pathLength += deltaTime*ssp.C(position); 
absorbtion = pathLength * le-3; 

} 

/* 
* This method calcultes the vector that expresses the change from current position 
* to the next. 
*/ 
private Vec3d deltaPosition() { 
temp.scale(prevdeltaArc, prevNormal); 
return temp; 

} 

/* 
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* This method calculates the midpoint between the two most recent points in 
* the ray path. 
*/ 
private void updatestarPosition() { 

temp.scale(prevdeltaArc/2.0,prevNormal); 
starPosition.add(prevPosition,temp); 

} 

/* 
* This method sets the x position of the ray 
*/ 
private void setPositionX(double x) { 

positicn.set(0,x); 
} 

/* 
* This method sets they position of the ray 
*/ 
private void setPositionY(double y) { 

position. set(l,y); 
} 

/* 
* This method sets the z position of the ray 
*/ 
private void setPositionZ(double z) { 

position.set(2,z); 
} 

/* 
* Maximum number of points of of information along the ray 
* path. 
*/ 
private static final int MAX POINTS = 100; 

/* 
* Handle to the sound speed profile object 
*/ 
private SSP     ssp = null; 

/* 
* Handle to the bottom object 
*/ 
private Bottom bottom = null; 

/* 
* Handle to the surface object 
*/ 
private Surface surface = null; 

/* 
* Starting position of the ray 
*/ 
private Vee3d   Startposition =    null; 

/* 
* Position of the ray after the last iteration 
*/ 
private Vec3d   prevPosition =     null; 

/* 
* Position of the ray in this iteration 
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*/ 
private Vec3d   position = null; 

/* 
* Change in position in this iteration 
*/ 
private Vec3d   deltaPosition =    null; 

/* 
* Position halfway between position and 
* position+deltaPosition 
*/ 
private Vec3d   starPosition =     null; 

/* 
* Position of the trailing edge of the ray segment, not 
* necessarily the prevPosition 
*/ 
private Vec3d   trailingPosition = null; 

/* 
* Direction of ray propagation in the last iteration 
*/ 
private Vec3d   prevNormal =       null; 

/* 
* Direction of ray propagation in the current iteration 
*/ 
private Vec3d   normal = null; 

/* 
* Change in path length in the current iteration 
*/ 
private double   deltaArc= 2.0; 

/* 
* Change in path length in the previous iteration 
*/ 
private double  prevdeltaArc =     0.0; 

/* 
* Simulation time for the ray 
*/ 
private double   time = 0.0; 

/* 
* Number of points saved for later.use 
*/ 
private int     pointCount =       0; 

I* 
* Total curavature of the ray path, used to 
* decide when a point should automatically be saved 
*/ 
private double  totalCurve=       0.0; 

/* 
* Indicates if a surface or bottom reflection has occurred 
*/ 
private boolean reflection =       false; 

/* 
* Angular elevation of the ray from downward (Y-direction) 
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* toward the (X-Z plane). In the RRA coordinate system 
*/ 
private double  elevation =        85.0; 

/* 
* Angular displacement of the ray in the (X-Z plane) 
* about the (+Y-axis) 
*/ 
private double  azimuth = 0.0; 

/* 
* Change in time in one iteration 
*/ 
private double  deltaTime=        0.006; 

/* 
* Number of deltaTime segments from the beginning 
* of the ray segment to the trailing edge 
*/ 
private int     pulseDuration =    0; 

/* 
* Total relaxation absorbtion along the ray path 
*/ 
private double  absorbtion =       0.0; 

/* 
* Total path length that the ray traverses 
*/ 
private double pathLength=       0.0; 

/* 
* Total phase changes due to reflection 
*/ 
private double reflectionPhase =  0.0; 

/* 
* Storage of the positions of the ray at the desired points 
* along the ray path 
*/ 
private Vec3d[] rayPath=     new Vec3d[MAX_POINTS]; 

/* 
* Storage of the trailing edge positions at the desired 
* points along the ray path 
*/ 
private Vec3d[] trailingPath = new Vec3d[MAX_POINTS]; 

/* 
* Storage of simulation time at the desired points along 
* the ray path 
*/ 
private doubleQ rayTime =     new double[MAX_POINTS]; 

/* 
* Variable allocated at instantiation to speed execution 
* so that we do not have to wait for dynamic allocation 
* at every iteration 
*/ 
private Vec3d   grade =       new Vec3d(); 

/* 
* Temporary variable allocated at instantiation so that 
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* time is not wasted allocating it dynamically. 
*/ 
private Vec3d terml = new Vec3d(); 

/* 
* Temporary variable allocated at instantiation so that 
* time is not wasted allocating it dynamically. 
*/ 
private Vec3d term2 = new Vec3d(); 

/* 
* Temporary variable allocated at instantiation so that 
* time is not wasted allocating it dynamically. 
*/ 
private Vec3d temp = newVec3d(); 

/* 
* Temporary variable allocated at instantiation so that 
* time is not wasted allocating it dynamically. 
*/ 
private double temp3; 

F.        SSP.JAVA 

/* 
File: SSP.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

/** 
♦(©version 1.0 .,,       „_„•■■   „^ 
*@author LT Timothy M. Holliday (<A HREF="http://www.sti.nps.navy.mil/~auv/hoUiday > 

http://www.stl.nps.navy .mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> .     H *<ddxa hrer^'Mp://www.sti.nps.navy.mil/dis-java-vrml/mil/navy/nps/rra/SSP.java > 
* http://www.sÜ.nps.navy.rmydis-java-vnnl/rnil/navy/nps/rra/SSP.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> • . .   „ 
*<da^href^4mages/RP^Classffierarchy.gir^^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> .   m 
*<ddxa hrer^'limages/CoordmateSystemgif'><IMG SRC="images/CoordinateSystemButton.jpg 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>* This class simulates the characteristics of the sound speed 
* of the volume of ocean under simulation. 
* 
*<dtxb>Explanation:</b> 
*<dd> This class simulates five standard profiles: 
* 1) no gradient - constant sound velocity of 1500 m/s 
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* 2) positive gradient - constantly increasing sound velocity 
* starting with 1500 m/s and having a slope of .017 m/s/m 
* 3) negative gradient - constantly decreasing sound velocity 
* starting with 1500 m/s and having a slope of .017 m/s/m 
* 4) parabolic - velocity profile obeying 
* 1490 + 4e-5 *(500 - depth)A2 
* 5) traditional - velocity profile obeying 
* atOm   1500 m/s 
* 0m - 100m + slope of .016 m/s/m 
* 1000m-2000m - slope of .02956 m/s/m 
* > 2000m   + slope of .017 m/s/m<P> 
* this profile froms the typical deep sound channel 
* 
*<dtxb>History:</b> 
*<dd> 250ct97 /Timothy M.Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 

*/ 
public class SSP { 

/** 
* Constructor for the SSP class. Its argument is one the the following 
* five sound speed profile types: 'constant', '+gradient', '-gradient', 
* 'parabolic'and'traditional' 
*/ 
public SSP (String sspType) { 
if (sspTypcequalsIgnoreCaseC'constant")) { 

environment = 1; 
} 
else if (sspType.equalsIgnoreCase("+gradient")) { 

environment = 2; 
} 
else if (sspType.equalsIgnoreCase("-gradient")) { 

environment = 3; 
} 
else if (sspType.equalsIgnoreCase("parabolic")) { 

environment = 4; 
} 
else if (sspType.equalsIgnoreCase("traditional")) { 

environment = 5; 
} 
else { 

System.out.println("User defined not implemented yet, defaulting to constant"); 
environment = 1; 

} 
} 

/** 
* Method used to calculate the gradient of sound speed for each of the 
* five standard profiles 
*/ 
public Vec3d gradC(Vec3d starPosition) { 

switch (environment) { 
case 1: gradient = gradCl (starPosition); break; 
case 2: gradient = gradC2(starPosition); break; 
case 3: gradient = gradC3(starPosition); break; 
case 4: gradient = gradC4(starPosition); break; 
case 5: gradient = gradC5(starPosition); break; 

} 
return gradient; 

} 
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/** 
* Method used to calculate the gradient of sound speed from any sound 
* speed profile. 
*/ 
public Vec3d generalgradC(Vec3d starPosition) { 

position2.add(starPosition,deltax); 
positionl .sub(starPosition,deltax); 
xgradient = (C(positior£>C(positionl »/delta; 
position2.add(starPosition,deltay); 
positionl .sub(starPosition,deltay); 
ygradient = (C(position2)-C(positionl »/delta; 
position2.add(starPosition,deltaz); 
positionl .sub(starPosition,deltaz); 
zgradient = (C(porition2)-C(positionl »/delta; 

gradient.set(xgradient,ygradient,zgradient); 

return gradient; 
} 

/** 
* Method used to calculate the speed of sound for each of the five 
* standard profiles. 
*/ 
public double C(Vec3d position) { 

switch (environment) { 
case 1: soundSpeed= SSP1 (position); break: 
case 2: soundSpeed = SSP2(position); break; 
case 3: soundSpeed = SSP3(position); break 
case 4: soundSpeed = SSP4(position); break; 
case 5: soundSpeed = SSP5(position); break 

} 
return soundSpeed; 

} 

** 
** Private setion begins here 
** 
♦»a***************************************************/ 

private double SSPl(Vec3d position) { 
return 1500.0; 

} 

private double SSP2(Vec3d position) { 
return (1500.0+0.017*position.get(l)); 

} 

private double SSP3(Vec3d position) { 
return (1500.0-0.017*position.get(l»; 

} 

private double SSP4(Vec3d position) { 
return (1490.0 + 4.0e-5 * (500.0 - position.get(l»*(500.0 - position.get(l»); 

} 

private double SSP5(Vec3d position) { 

if(position.get(l)<= 100) { 
soundSpeed = 1500.0+0.016*position.get(l); 

} 
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else if (position.get(l) <= 1000) { 
soundSpeed = 1501.6 - 0.02956 * (position.get(l) -100); 

} 
else 
{ 
soundSpeed = 1475.0 + 0.03 * (position.get(l) -1000); 

} 
return soundSpeed; 

} 

private Vec3d gradCl(Vec3d position) { 
gradient.set(0,0,0); 
return gradient; 

} 

private Vec3d gradC2(Vec3d position) { 
gradient. set(0,+0.017,0); 
return gradient; 

} 

private Vec3d gradC3(Vec3d position) { 
gradient.set(0,-0.017,0); 
return gradient; 

} 

private Vec3d gradC4(Vec3d position) { 
gradient.set(0,4.0e-5 * -2 *(500.0 - position.get( 1 )),0); 
return gradient; 

} 

private Vec3d gradC5(Vec3d position) { 

if (position.get(l) <= 100) { 
gradient.set(0,0.016,0); 

} 
else if (position.get(l) <= 1000) { 

gradient. set(0,-0.02956,0); 
} 
else 
{ 
gradient.set(0,0.017,0); 

} 
return gradient; 

} 

/** standard environment that was initialized */ 
private int environment = 1; 

/** class constant defining incrementally small variation in x direction*/ 
private final Vec3d deltax = new Vec3d(0.01,0.0,0.0); 
/** class constant defining incrementally small variation in y direction*/ 
private final Vec3d deltay = new Vec3d(0.0,0.01,0.0); 
/** class constant defining incrementally small variation in z direction*/ 
private final Vec3d deltaz = new Vec3d(0.0,0.0,0.01); 
/** class constant defining incrementally small variation in magnitude in any direction*/ 
private final double delta = 0.02; 

/** class variable used in calculating speed of sound */ 
private double soundSpeed; 

/** class variable used in calculating the gradient of sound speed*/ 
private Vec3d positionl = new Vec3d(); 
/** class variable used in calculating the gradient of sound speed*/ 
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private Vec3d position2 = new Vec3d(); 
/** class variable used in calculating the gradient of sound speed*/ 
private Vec3d gradient = new Vec3d(); 
/** class variable used in calculating the gradient of sound speed*/ 
private double xgradient, 
/** class variable used in calculating the gradient of sound speed*/ 
private double ygradient; 
/** class variable used in calculating the gradient of sound speed*/ 
private double zgradient; 

} 

G.       SURFACE.JAVA 

/* 
File: 
Compiler: 
*/ 

package mil 

Surface.java 
jdkl.1.6 

navy.nps.rra; 

import mil.navy.nps.rra.*; 

I** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A 

HREF="http://www.sÜ.nps.navy.miy~auv/holliday">htrp://www.sti.nps.navy.mil/^uv/hollid^y</A>) 
* 
*<dtxb>Location:</b> 
*<dd><^m-ef^,1http://www.sti.nps.navy.rniydis-java-vrnu7mil/navy/nps/n-a/Surface 
* http://www.sti.nps.navy.nüydis-java-vmü/rml/navy/nps/na/Surface.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<ddxa In-ef-'iuiages/RRAQassffierarchy.gifxMG SRC="m^ 

AUGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordmateSystem.gif 'xMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>* This class acoustically simulates the characteristics of 
* the ocean's surface. It is simulated as being a pressure release 
* surface with no roughness 
* 
*<dtxb>Explanation:</b> 
*<dd>Since a ray is the normal vector to a plane wave, rays interact with 
* surfaces the same way that plane waves do. Rays obey Snell's law and 
* the equations of reflection and transmission of wave energy. This model 
* uses vector algebra to determine when the end of a ray has passed through 
* the bottom and to reflect any rays that have penetrated. Since the 
* surface is being approximated, to a good degree of accuracy, as a perfect 
* pressure release surface any wave striking it will have a 180 degree 
* phase shift and a reflection coefficient of one.<P> 
*. 
*<dtxb>History:</b> 
*<dd> 8Nov97  /Timothy M. Holliday /New 
*<dd> 18Mar98 /Timothy M. Holliday /Added HTML comment convention 
* 
*@see Ray 
*@see Bottom 
*@see Vec3d 
*/ 
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public class Surface { 

I** 

* Constructor for the surface class. Its argument has one choice, smooth. 
* Smooth indicates a perfect pressure release surface. 
*/ 
public Surface (String surfaceType) { 
if (surfaceType.equalsIgnoreCase(nsmooth")) { 

environment = 1; 
} 
else { 

System.out.println("User defined not implemented yet, defaulting to smooth"); 
environment = 1; 

} 
} 

I** 

* This procedure checks to see if the ray path has crossed the surface 
* during the current time step and returns true if it did. 
*/ 
public boolean intersected(Vec3d Pos) { 

intersected = false; 
switch (environment) { 

case 1: 
if (Pos.get(l) < surfaceDepth) { 

intersected = true; 
} 
break; 

} 
return intersected; 

} 

I** 

* This method causes a Snell's Law reflection to occur at the surface of the ocean. 
*/ 
public double reflect(Vec3d Pos,Vec3d normal) { 

switch (environment) { 
case 1: 

double diff; 
diff = Pos.get(l) - surfaceDepth; 
Pos. set( 1 ,surfaceDepth-diff); 
normal.set( 1 ,-normal.get( 1)); 
break; 

} 
return Math.PI; 

} 

/** 
* This method returns a VRML string representing the Surface of the ocean. 
*/ 
public String VRMLSurface() { 

intminX = -5000; 
int minZ = -5000; 
int maxX = 5000; 
int maxZ = 5000; 

return "Transform {" + appendage + 
" rotation 1 0 0 3.14" + appendage + 
" children" + appendage + 

"Shape {" + appendage + 
" appearance Appearance {" + appendage + 
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"   material Material {" + appendage + 
"      emissiveColor 0 0 .4" + appendage + 
"     diffuseColor 0 0 0" + appendage + 
"     transparency .9" + appendage + 
"    }" +appendage + 
" }" +appendage + 
" geometry IndexedFaceSet {" + appendage + 
"   solid FALSE" + appendage + 
"   coord Coordinate {" + appendage + 
"     point [" + appendage + 

"+ maxX +""+ surfaceDepth +""+ maxZ +"," + appendage + 
"+ maxX +""+ surfaceDepth +""+ minZ +"," + appendage + 
"+ minX +""+ surfaceDepth +""+ minZ +"," + appendage + 
"+ rninX +""+ surfaceDepth +""+ maxZ +"" + appendage + 

"     ]" + appendage + 
"    }" +appendage + 
"   coordlndex [ 0,1,2,3 ]" + appendage + 
" }" +appendage + 
"}" +appendage + 
"}" +appendage; 

} 

/** 
* This is a static method used to indicate whether a line feed is desired 
* at the end of every line. 
* 
* true' indicates a linefeed is desired and 'false' indicates that a space 
* is desired" 
*/ 
public static void setAppendLineFeed(boolean pAppendLineFeed) { 

appendLineFeed = pAppendLineFeed; 
if (appendLineFeed) { 

appendage = LINE_FEED; 
} 
else { 

appendage = SPACE; 
} 

} 

/** 
* This is a static method that returns the current line appendage. 
*/ 
public static boolean getAppendLineFeed(){ 

return appendLineFeed; 
} 

** Private Section 

private static final String LINEJFEED = "\n"; 
private static final String SPACE = " "; 
private static boolean appendLineFeed = true; 
private static String appendage = LINE_FEED; 

/** standard environment that was initialized */ 
private int  environment = 1; 

/** seems useless, but allows for variations due to sea state*/ 
private double surfaceDepth = 0; 

/** temporary boolean variable indicating if a reflection has occured*/ 
private boolean intersected; 
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H.       TARGETS.JAVA 

/* 
File: Targets.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ähref="http://www.stl.nps.navy.mil/dis-java-vni^ 
* http://vvww.sÜ.nps.navy.mil/dis-java-vnnl/nnl/navy/nps/rra/Targets.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><ärffef^''irnages/RRAClassmerarchy.gif,><M 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</t» 
*<ddxa href="images/CoordinateSystem.gif xMG SRC="irnages/CoordinateSysteraButton.jpg" 

ALIGN=ABSCENTERx/a> 
• 
*<dtxb>Summary:</b> 
*<dd>This class tracks the positions of targets in the VRML scene. 
* It provides for random target generation and a method to see if 
* a sonar ping has collided with a target. 
* 
*<dtxb>Explanation:</b> 
*<dd>As acoustic waves traverse the ocean environment they impinge 
* on objects. The bottom and suface are constraints on the water 
* colomn extent and as such they are handled in special classes 
* by themselves. All other objects, those in the water column, 
* are considered targets. When the sonar hits the target, energy 
* is scattered off the target in a mainly isotropic manner. This 
* scattered energy is what returns to the sending sonar giving 
* away the location of the target. In the simulation the plane 
* forming the front of the wave front is compared to the distance 
* of the target awar from the plane by means of a vector 
* algebra clculation. When this distance changes sign, there 
* is a possibility that the sonar pulse hit the object, and 
* continued on its way. Further checks are then done to verify 
* whether or not a detection event has occurred. The corresponding 
* information is then made available to the calling method as 
* the return value of a method. This class also provides a method 
* for randomly generating sample targets and is the logical place 
* to add code to receive position information from external sources, 
* like the internet via DIS.<P> 
* 
*<dtxb>Füstory:</b> 
*<dd> 30Jan98 /Timothy M. Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 
*<dd> 13May98 /Timothy M. Holliday /New Constructor for placing a 
* minefield. New statistic method. 
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*@see Beam 
*/ 

public class Targets { 

/** 
* Constructor for the targets class. The first two arguments supply the surface 
* and bottom types. The second two indicate how many mines and submarines to add 
* to the target data base. The mines+submarines are limited to 100 and they are 
* randomly placed. 
*/ 
public Targets (Surface s,Bottom b, int numberMines, int numberSubs) { 

int counter, 
double x,y,z; 

skipCount = 0; 
surfaceNormal = new Vec3d(); 
position = new Vec3d(); 
segmentl = new Vec3d(); 
segment2 = new Vec3d(); 

numberofMines = numberMines; 
numberofSubs = numberSubs; 

if ((numberofMines+numberofSubs)>=MAX_TARGETS) { 
System.out.printhi(nToo many Targets:" + (numberofMines+numberofSubs)); 

} 
else { 

for (counter=0;counter<numberofMines/2;counter++) { 
x = Math.random()*2500; //in ziomek coordinate system 
z = Math.random()*4800+200; 
y = Math.random()*b.depth(x^); 
target[counter] = new Vec3d(x,y,z); 
targetSize[counter][0] = 1.0; // x dimension 
targetSize[counter][l] = 1.0; //y dimension 
targetSize[counter][2] = 1.0; Hz dimension 
targetArea[counter] = 3.1415; 
targetDistance[counter] = 0.0; 

} 
for (;counter<numberofMines;counter-H-) { 

x = Math.random()*2500; //in ziomek coordinate system 
z = Math.random()*-4800-200; 
y = Math.random()*b.depth(x,z); 
targetfcounter] = new Vec3d(x,y,z); 
targetSize[counter][0] = 1.0; // x dimension 
targetSize[counter][l]= 1.0; //y dimension 
targetSize[counter][2] = 1.0; // z dimension 
targetAreafcounter] = 3.1415; 
targetDistäncefcounter] = 0.0; 

for (;counter<numberofSubs+numberofMines;counter-H-) { 
x = Math.random()*-1000; 
z = Math.random()*800-400; 
y = Math.random()*b.depth(x^); 
target[counter] = new Vec3d(x,y,z); 
targetSize[counter][0] = 100.0; // x dimension 
targetSize[counter][l] = 10.0; //y dimension 
targetSize[counter][2] = 10.0; //z dimension 
targetArea[counter] = 3.1415*100; 
targetDistance[counter] = 0.0; 

} 
} 

} 
144 



/** 
* Constructor for the tartgets class. The first two arguments are 
* the bottom and surface objects. The next two are the max and rain 
* x-direction boundaries for a minefield and the next two are for 
* the z-direction. The last is the number of mines. Themaaximum 
* number of mines is 100 and they are randomly placed. 
*/ 
public Targets (Surface s, 

Bottom b, 
double maximumX, 
double minimumX, 
double maximumZ, 
double minimumZ, 
int numberMines) { 

int counter, 
double x,y,z; 

skipCount = 0; 
surfaceNormal = new Vec3d(); 
position = new Vec3d(); 
segmentl = new Vec3d(); 
segment2 = new Vec3d(); 

numberofMines = numberMines; 
numberofSubs = 0; 

if ((numberofMines+numberofSubs)>=MAX_TARGETS) { 
System.out.println("Too many Targets:" + (numberofMines+numberofSubs)); 

} 
else { 

for (counter=0;counter<numberofMines;counter-H-) { 
x = Mam.randcm()*(maximumX-mniimumX)-KnmmiumX; //in ziomek coordinate system 
z = Mam.random()*(maximumZ-minimumZ)^^ninimumZ; 
y = Math.random()*b.depth(x£); 
target[counter] = new Vec3d(x,y,z); 
targetSize[counter][0]= 1.0;//x dimension 
targetSize[counter][l] = 1.0; // y dimension 
targetSize[counter][2] = 1.0; // z dimension 
targetArea[counter] = 3.1415; 
targetDistance[counter] = 0.0; 
numberOfDetects[counter] = 0; 
estimatedPosition[counter] = new Vec3d(); 

} 
} 

} 

/** 
* This method resets the parameters that speed up target collision detection. 
* It is used whenever a new beam is calculated. 
*/ 
public void resetTargets() { 

skipCount = 0; 
for (counter=0;counter<numberofSubs^umberofMines;counterH-) { 
targetDistance[counter] = 0.0; 

} 
} 

/** 
* This method returns a VRML string representing the targets in the ocean. 
*/ 
public String VRMLTargets() { 

int counter, 
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String temporaryString; 

temporaryString = "EXTERNPROTO ContactMine [\n" + 
" exposedField SFVec3f translation ]\"ContactMine.wrl\"\n" + 

"EXTERNPROTO DieselSub [\n" + 
" exposedField SFVec3f translation ]\"DieselSub.wrl\"\n" + 

"Transform {\n" + 
" children [\n"; 

for(counter=0;counter<numberofMines;counter++){ 
temporaryString += "   ContactMine {translation" + (int)target[counter].get(0) +"" 

+ (-(int)target[counter].get(l)) +"" 
+ (-(int)target[counter].get(2)) +"" 
+ "}\n"; 

} 
for(;counter<numberofMines+numberofSubs;counter-H-){ 

temporaryString += "   DieselSub {translation" + (int)target[counter].get(0) +"" 
+ (-(int)target[counter].get(l)) +"" 
+ (-{mt)target[counter].get(2)) +"" 

+ "}\n"; 

} 
return temporaryString += " ]\n" + 

"}\n"; 
} 

/** 
* This method returns a boolean indicating whether or not a detection as occurred. 
* True indicates a detection and false indicates no detection. 
*/ 
public boolean isCollision(Ray rayl, 

Ray ray2, 
Ray ray3, 
Ray ray4) { 

collisionCount = 0; 
collision = false; 

// speed up detection by skipping distance between targets 
if(skipCount>0){ 

skipCount-; 
} 
else { 

//reset the minimum distance to a large value 
minDistance = 100000; 

//calculate the surface normal 
segmentl .sub(ray2.getPosition()^ayl .getPosition()); 
segment2.sub(ray4.getPosition()^ayl.getPosition()); 
surfaceNormal.cross(segmentl,segment2); 
surfaceNormal.normalize(); 
collisionArea = 0.0; 

for (countei=0;counter<(numrÄrofMines+numberoiSubs);counterH-) { 

// determine the distance of the pulse from the target 
position. sub(target[counter],rayl.getPosition()); 
distance = position. dot(surfaceNonnal); 

// if the product of the distance in the last step and the 
// current step is negative then the beam may have passed 
// through the object 
if (targetDistance[counter]*distance < 0) { 
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collision = possibleCollision(rayl, 
ray2, 
ray3, 
ray4); 

if (collision) { 
numberOfDetects[counter]++; 
estimatedPosition[counter].add(rayl.getPosition(),ray3.getPosition()); 
estimatedPosition[counter].scale(.5); 
collisionArea += targetAreafcounter]; 

} 
else { 
} 

} 
targetDistancefcounter] = distance; 

// save the distance if it is the minimum for this time step 
if(Math.abs(distance)<minDistance) { 

minDistance = Math.abs(distance); 
} 

} 

// calculate the number of time steps that looking for detections can 
// skipped from the niinimum distance to the next targer,time step and 
//average sound speed 
skipCount = (mt)(minDistance/12.0); 

return collision; 
} 

/** 
* This method returns the cross sectional area of the object that was detected. 
*/ 
public double getCollisionArea() { 

return collisionArea; 
} 

/** 
* This method prints the mine number, position, estimated position and 
* number of detects on each mine in the data base. The numbers are 
* printed to the standard console. 
*/ 
public void printMineStatistics() { 

int i; 
for(i=0;i<numberofMines;i++) { 

System.out.println( 
"Mine "+i+ 
" Position "+target[i].get(0)f""+ 

target[i].get(l)+" '*+ 
target[i].get(2)4- 

" Estimate "+estimatedPosition[i].get(0)+""+ 
estimatedPosition[i].get(l>t-" "+ 
estimatedPosition[i].get(2)f 

" Detects "+numberOfDetects[i]); 
} 

} 

/♦»»««»»a********************************************************** 

** 
** Private Section 
** 
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*************************»****************************************/ 

* This method returns a boolean indicating that a possible interaction between 
* the sonar pulse and another registered object has occurred. 
*/ 
private boolean possibleCollision(Ray rayl, 

Ray ray2, 
Ray ray3, 
Rayray4){ 

if (inBox(rayl.getTrailingPosition()5ray3.getPosition()) && 
inBox(ray2.getTrailingPosition(),ray4.getPosition())&& 
inBox(ray3.getTrailingPosition(),rayl .getPosition()) && 
mBox(ray4.getTrailingPosition(),ray2.getPosition())) { 
collisionCount-H-; 
return true; 

} 
else { 
return false; 

} 
} 

/* 
* This method returns a boolean indicating whether or not the any part 
* of the object is within the parallelpiped formed by the sonar pulse 
*/ 
private boolean inBox(Vec3d comerl, Vec3d corner2) { 
if (intoterval(w>merl.get(0),corner2.get(0), target[counter].get(0)) && 

inInterval(cornerl.get(l),corner2.get(l), target[counter].get(l)) && 
inmterval(cornerl.get(2),corner2.get(2), target[counter].get(2))) { 

return true; 
} 
else { 
return false; 

} 
} 

/* 
* This method returns a boolean indicating whether or not the any part 
* of the object is within the extent of the pulse in one of the three 
* cartesian directions. 
*/ 
private boolean inInterval(double posl, double pos2, double target) { 
if (((posl < target) && (target < pos2)) || 

((pos2 < target) && (target < posl))) { 
return true; 

} 
else { 
return false; 

} 
} 

private static final int MAX TARGETS = 100; 
private Vec3d target[] =  new Vec3d[MAX_TARGETS]; 
private double targetSize[][] = new double[MAX_TARGETS][3]; 
private int numberOfDetectsQ = new mt[MAX_TARGETS]; 
private Vec3d estimatedPosition[] = new Vec3d[MAX_TARGETS]; 

private double collisionArea = 0.0; 
private double targetArea[] = new double[MAX_TARGETS]; 
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private int numberofMines; 
private int numberofSubs; 
private boolean collision = true; 
private int counter, 

private int collisionCount = 0; 
private Vec3d surfaceNormal = null; 
private Vec3d position = null; 
private Vec3d segmentl = null; 
private Vec3d segment2 = null; 
private double distance = 0.0; 
private double targetDistance[] = new double[MAX_TARGETS]; 
private int skipCount; 
private double minDistance; 

} 
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APPENDIX B. EXAMPLE APPLICATIONS 

A.       EXAMPLEBEAMDYNAMICJAVA 

/* 
File: ExampleBeamDynamic.java 
Compiler jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 
import java.util.Date; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahref^"http://www.sti.nps.mvy.mil/dis-jav^^^ 
* http://www.sti.nps.navy.mil/dis-java-vimymilto 
* 
*<dtxt»Hierarchy Diagram:</b> 
*<dd><arffef^"images/RRAClassffierarchy.gif'><MGSRC="images/RRAClassffierarchyButton.jpg'' 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa hre^"images/CoordinateSystem.gif'xMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>ExampleBeamStatic:</b> 
*<ddxa href^"ExampleBeamDvnamic.wrr><IMG SRC="images/ExampleBeamDynamic.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Siraunary:</b> 
*<dd>Produces an example VRML scene showing a beam. 
* 
*<dtxb>Explanation:</b> 
*<dd>Shows a VRML scene with a surface, bottom and beam. The beam 
* show the volume traced out by the pulse during its transmission.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Apr97 /Timothy M. Holliday /New 
* 
*@see Beam 
*/ 

public class ExampleBeamDynamic { 

/** 
* This method initializes the environment arid the sonar Lobe and 
* has the VRML reprsentation of each written to the console. 
*/ 
public static void main(StringQ args) { 

SSP ssp  = new SSPftraditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new SurfaceCsmooth"); 
Beam beam = new Beam(); 
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beam.setElevation(80); 
beam. setAzimuth(20); 
beam.setHalfBeamWidthY(2); 
beam. setHal£BeamWidthX(2); 
beam.setPosition(-1000, 50,0); 
beam.setE>uration( 1); 
beam. setBottom(bott); 
beam. setSurface(surf); 
beam.setSsp(ssp); 
beam.setEndTime(8); 
beam.reset(); 

// Create object with no targets for methods requiring a target 
// as a parameter 
Targets targets = new Targets(surf,bott,0,0); 

// record start time 
Date timecheck = new Date(); 

// print out a VRML header 
System.out.println("#VRML V2.0 utf8"); 
System.out.prmtm(H\nInline{url[\''Header.wrlV']}\n',); 

// call each class' VRML print routine 
System.out.println(bott.VRMLBottom()); 
System. out.println(surf.VRMLSurfaceO); 

System.out.prmtln(beam.pingTimerVRML()); 
beam.calculateBeam(targets); 
beam, dynamic VRML(); 

// record stop time 
Date timecheck2 = new Date(); 

System.out.println( "# " + timecheck); 
System.out.println( "# " + timecheck2); 

} 
} 

B.        EXAMPLEBEAMSTATIC.JAVA 

/* 
File: ExampleBeamStatic.java 
Compiler jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 
import java.util.Date; 

/** 
*@version 1.0 
•©author LT Timothy M. Holliday (<A HREF=,,http://www.stl.nps.navy.mil/~auv/holliday > 

http://www.stl.nps.navy .mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> .   . 
*<dd><ahref="http://www.sti.nps.navy.nnl/dis-java-vnmVmil/navy/nps/n^/ExampleBeamStatic.java"> 
* http://www.sti.nps.navy.mil/dis-java-vnm7mil/mvy/nps/rra/ExampleBeamStatic.java</a> 
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*<dtxb>Hierarchy Diagram:</b> 
*<dd><ah^ef^,,images/RRAClassffie^a^chy.gif'><IMGSRC="images/RRAClassHierarchyButton.jpg,' 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<dd><^bxef=''images/CoordinateSystem.gif,><MGSRC=''images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>ExampleBeamStatic:</b> 
*<ddxa href="ExampleBeamStatic.wrl"xIMG SRC="images/ExampleBeamStatic.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Produces an example VRML scene showing a beam. 
• 
*<dtxb>Explanation:</b> 
*<dd>Shows a VRML scene with a surface, bottom and beam. The beam 
* show the volume traced out by the pulse during its transmission.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Apr97 /Timothy M. Holliday /New 
* 
*@see Beam 
*/ 

public class ExampleBeamStatic { 

/** 
* This method initializes the environment and the sonar Beam and 
* has the VRML representation of each written to the console. 
*/ 
public static void main(String[] args) { 

Vec3d pos = new Vec3d( -1000, 50,0); 
SSP ssp  - new SSP("traditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new Surface("smooth"); 

Beam beam = new Beam(); 
beam.setElevation(80); 
beam. setAzimuth(20); 
beam.setHalfßeamWidthY(2); 
beam.setHalffieamWidthX(2); 
beam.setPosition(-1000, 50,0); 
beam. setDuration( 1); 
beam.setBottom(bott); 
beam.setSurface(surf); 
beam.setSsp(ssp); 
beam.setEndTime(8); 
beam.reset(); 

// record start time 
Date timecheck = new DateQ; 

PrmtVRML.setColorScheme(PrintVRML.RAINBOW,40,100); 
PrmtVRML.setmtensityScheme(PrintVRML.CONSTANT); 

// print out a VRML header 
System.out.println(PrintVRML.header()); 
System.out.prmtm(PrintVRML.navigationInfo()); 
Systemout.prmtm(PrintVRML.directionalLightO); 
System.out.prmtm(rJrmtVRML.protoColo^Bar("TL[db]^"^,,^"")); 
System.out.println(PrintVRML.colorBarView("From the East", 
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-500, -500,14500, 
0, 0,1, 0)); 

System.out.println(PrintVRML.colorBarView("From the South", 
-14500, -500, 0, 
0,1,0,-1.57)); 

System.out.println(PrintVRML.colorBarView("From the West", 
-500, -500, -14500, 
0,1,0,3.14)); 

System.out.println(PrintVRML.colorBarView("Froni the Air", 
-500,14500,0, 
1,0,0,-1.57)); 

// call each class' VRML print routine 
System.out.printüi(bott.VRMLBottom()); 
System.out.println(surf.VRMLSurface()X 
PrintVRML.setColorScheme(PrintVRML.RAINBOW,8,0); 
FiintVRML.setIntensityScheme(PrintVRML.CONSTANT); 
System.out.prmtb(PrintVRML.protoColorBar(',TL[dB]",'",

;"","")); 
System.out.println(beam.staticVRML(Beam.T_L3eam.NONE)); 
System.out.printb(PrktVRML.printLegendView<"ExampleBeamStatic", 

" This is an example beam.", 
"It has an initial elevation", 
"of 80 degrees from", 
"vertical and 20 degrees", 
"west of north.", 
-500, -500,15000)); 

// record stop time 
Date timecheck2 = new DateQ; 

System.out.println( "# " + timecheck); 
System.out.println( "# " + timecheck2); 

} 
} 

C.       EXAMPLELOBEDYNAMIC.JAVA 

/* 
File: ExampleLobeDynamic.java 
Compiler jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

import java.util.Date; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
• 
*<dtxb>Location:</b> 
*<dd><^href^"http://www.sti.nps.navy.rdVdis-java-vnnl/mil/navy/nps/rra/Example^ 
* http://www.stl.nps.navy.mil/dis-java-vrrnl'mil/mvy/nps/mi/ExampleIx)beDynamic.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
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*<dd><ah^ef="ilImges/RR^Classffierarchy.gif'><MGSRC=''iInages/RRAClassHiera^chyButton.jpg,' 
ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<dd><ahref="images/CoordmateSystem.gif'><MGSRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>ExampleLobeDynamic:</b> 
*<ddxa href="ExampleLobeDynamic.'wrr,xIMG SRC="images/ExampleLobeDynamic.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Produces an example VRML scene showing a lobe. 
* 
*<dtxb>Explanation:</b> 
*<dd>Shows a VRML scene with a surface, bottom and lobe. The scene 
* show the pulse during its transmission as it travels. 
* A lobe is composed of several individual beams.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Apr97/Timothy M.Holliday /New 
* 
*@see Lobe 
*/ 

public class ExampleLobeDynamic { 

/** 
* This method initializes the environment and the sonar Lobe and 
* has the VRML reprsentation of each written to the console. 
*/ 
public static void main(String[] args) { 

Vec3d pos = new Vec3d( -1000,50,0); 
SSP ssp  =newSSP("traditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new Surface("smooth"); 

Lobe lobe = new Lobe(); 
lobe.setElevation(80); 
lobe.setAzimuth(20); 
lobe.setLobeWidthY(4); 
lobe.setLobeWidthX(4); 
lobe.setNumberYPartition(2); 
lobe. setNumberXPartition(2); 
lobe. setPosition(pos); 
lobe.setDuration(l); 
lobe. setBottom(bott); 
lobe. setSurface(surf); 
lobe. setSsp( ssp); 
lobe.setEndTime(8); 
lobe.reset(); 

// Create object with no targets for methods requiring a target 
// as a parameter 
Targets targets = new Targets(surf,bott,0,0); 

// record start time 
Date timecheck = new Date(); 

// print out a VRML header 
System.out.println(PrintVRML.header()); 
Systemout.prmtln(PrmtVRML.navigationlnfo()); 
System.out.prmtk(PrmtVRML.directionalLight()); 
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System.out.println("\nInline{url[\"Header.wrl\"]}\n"); 

// call each class' VRML print routine 
System.out.println(bott.VRMLBottom()); 
System. out.println(surf.VRMLSurface()); 
lobe.calculateLobe(targets); 
System.out.raTmtln(lobe.dynamicVRML()); 
System.out.prmtln(PmtVRML.rÄmtI^gendView(''ExampleLorÄDynamic'', 

" This is an example lobe.", 
"It is made of 4 beams", 
"Elevation - 80 degrees", 
"from vertical and 20", 
"degrees west of north.", 
-500, -500,15000)); 

// record stop time 
Date timecheck2 = new Date(); 

Systemout.println( "# " + timecheck); 
System.out.println( "# " + timecheck2 ); 

} 
} 

D.       EXAMPLELOBESTATIC.JAVA 

/* 
File: ExampleLobeStatic.java 
Compiler jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

import java.util.Date; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<do><ahrefi"http://www.sÜ.nps.ria^.mil/dis-java-vrml/mil/navy/nps/rra/ExampleLobeStaticj^ 
* http7/www.sÜ.nps.navy.miydis-java-vrml/mil/Mvy/nps/n-a/ExampleIx)beStatic.java</a> 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><arn-ef="images/RI^Classffierarchy.gif,><MGSRC="images/RRAClassffierarchyButto 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordinateSystem.gif 'xMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>ExampleLobeStatic:</b> 
*<ddxa href="ExampleLobeStatic.wrl"xIMG SRC="images/ExampleLobeStatic.jpg" ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Produces an example VRML scene showing a lobe. 
* 
*<dtxb>Explanation:</b> 
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*<dd>Shows a VRML scene with a surface, bottom and lobe. The lobe 
* show the volume traced out by the pulse during its transmission. 
* A lobe is composed of several individual beams.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Apr97 /Timothy M. Holliday /New 
* 
*@see Lobe 
*/ 

public class ExampleLobeStatic { 

/** 
* This method initializes the environment and the sonar Beam and 
* has the VRML representation of each written to the console. 
*/ 
public static void main(String[] args) { 

Vec3d pos = new Vec3d( -1000,50,0); 
SSP ssp  =newSSP("traditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new Surface("smooth"); 
Targets targets = new Targets(surf,bott,0,0); 

Lobe lobe = new Lobe(); 
lobe. setElevation(80); 
lobe.setAzimuth(20); 
lobe.setLobeWidthY(4); 
lobe.setLobeWidthX(4); 
lobe.setNumberYPartition(5); 
lobe.setNumberXPartition(5); 
lobe. setPosition(pos); 
lobe.setDuration(l); 
lobe. setBottom(bott); 
lobe.setSurface(surf); 
lobe.setSsp(ssp); 
lobe.setEndTime(8); 
lobe.reset(); 
lobe.calculateLobe(targets); 

// record start time 
Date timecheck = new DateQ; 

// print out a VRML header 
System.out.println(PrintVRML.header()); 
System.out.prmtto(PrmtVRML.navigationInfo()); 
System.out.rjrmtln(PrmtVRML.directionalLight()); 
System.out.println(bott.VRMLBottom()); 
System.out.println(surf.VRMLSurface()); 

/*    System. out.println("#Scheme 1"); 
PrintVRML.setColorScheme(PrintVRML.RAlNBOW,8,0); 
PrmtVRML.setmtensiryScheme(PrintVRML.CONSTANT); 
System.out.prmtm(PrmtVRML.protoColo^Ba^(nTime[sec]","^"^",')); 
System.out.rffmtm(lobe.staticVRMI<Beam.TIME,Beam.NONE)); 

System.out.println("#Scheme 2"); 
PrmtVRML.setColorScheme(PrintVRML.RAINBOW,40,100); 
PrmtVRML.setmter^tyScheme(PrintVRML.CONSTANT); 
System.out.p^mtm(PrmtVRML.protoColorBar("TL[dB]^•"',"",',")); 
System.out.prmtm(lobe.staticVRML(BeamT_L3eam.NONE)); 

*/ 
System.out.println("#Scheme 3"); 
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PrintVRML.setColorScheme{PrüitVRML.RAINBOW,40,100); 
PrintVRML.setIntensityScheme(PrintVRML.LINEAR,058); 
SystenLout.println(PrintVRML.protoColorBar(''TL[dB]^"Time[sec]","",'"')); 
System. out.println(lobe.staticVRML(Beam.T_L3eam. TIME)); 

/* 
System.out.println("#Scheme 4"); 
PrmtVRML.setColorSchemeCPrintVRML.RAINBOW^^); 
PmtVPJ^.seüntensityScheme(PrintVRML.LINEAR)40;100); 
System.out.println(PrintVRML.protoColorBar('Time[sec]","TL[dB]"5""5'"')); 
System. out.println(lobe.staticVRML(Beain.TIME,Beam.T_L)); 

System.out.println("#Scheme 5"); 
PrintVRML.setColorScheme(PrintVRML.TRICOLOR,40,60,80,100); 
PrmtVRML.setmtensityScheme(PrintVRML.LINEAR,0,8); 
System.out.prmtm(PrmtVPJVIL.protoColorBar("%'Time[sec]","Detect","Counter Detect")); 
System.out.pimÜn(lobe.staticVRML(Beam.T_L,Beam.TlME)); 

System.out.println("#Scheme 6"); 
PrintVRML.setColorScheme(PrintVRML.TRICOLOR,40,60,80,100); 
PrmtVPJvIL.setmtensityScheme(PrintVRML.LINEAR,40,100); 
System.ouLpTmtm(PmtVRML.protoColorBar("","TL[dB]","Detect,',"Counter Detect")); 
System.out.prmtm(lobe.staticVRML(Beam.T_L5Beam.T_L)); 

System.out.println("#Scheme 7"); 
PrintVRML.setColorScheme(PrintVRML.RED,40,100); 
PrmtVRML.setlnteiisi1ySchme(PrintVRML.LINEAR,40,100); 
System.out.printlB(PrintVPvML.protoColorBar("","TLtdb]","","")); 
System.out.println(lobe.staticVRML(Beam.NONE3eam.T_L)); 

*/ 
System.out.println(PrintVRML.colorBarView(''From the East", 

-500, -500,14500, 
0,0,1,0)); 

System.out.prmtm(PrintVRML.colorBarView("From the South", 
-14500, -500, 0, 
0,1,0,-1.57)); 

Systemout.prmtm(PrmtVRML.colorBarView("From the West", 
-500, -500, -14500, 
0,1,0, 3.14)); 

System.out.println(PrmtVPvML.colorBarView("From the Air", 
-500,14500,0, 
1,0,0,-1.57)); 

System.out.prmtm(PrmtVEl!Vn..prmtLegendView(,'ExampleLobeStatic", 
" This is an example lobe.", 
"It is made of 4 beams", 
"Elevation - 80 degrees", 
"from vertical and 20", 
"degrees west of north.", 
-500, -500,15000)); 

//record stop time 
Date timecheck2 = new Date(); 

System.out.println( "# " + timecheck); 
System.out.println( "# " + timecheck2 ); 
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E.        EXAMPLERAY.JAVA 

/* 
Füe: ExampleRay.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import mil.navy.nps.rra.*; 

import java.util.Date; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><&href^'%ttp://www.sti.nps.navy.nül/chs-j^^ 
* http://www. sÜ.nps.na\y.mil/dis-java-vniil/niil/navy/nps/rra/ExampleRay.java</a> 
* 
*<dtxb>Hierarchy E>iagram:<^b> 
*<dd><a href^'images/RRAClassffierarchy.gif XMG SRC="m^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordmateSystem.gif 'xIMG SRC="images/CoordinateSystemButton.jpg'' 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>ExampleRay:</b> 
*<ddxa href="ExampleRay.wrl"xIMG SRC="images/ExampleRay.jpg" ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Produces an example VRML scene showing a ray. 
* 
*<dtxb>Explanation:</b> 
*<dd>Shows a VRML scene with a surface, bottom and ray.<P> 
* 
*<d£xb>History:</b> 
*<dd> 15Apr97/Timothy M. Holliday /New 
* 
*@see Ray 
*/ 

public class ExampleRay { 

/** 
* This method initializes the environment and the sonar Ray and 
* has the VRML reprsentation of each written to the console. 
*/ 
public static void main(String[j args) { 

SSP ssp = new SSPCtraditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new Surface("smooth"); 

Ray ray = new Ray(); 
ray.setPosition( -1000,50,0); 
ray.setElevation(80); 
ray. setAzimuth(20); 
ray. setDeltaTime(. 006); 
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ray.setDuration(l); 
ray. sefßottom(bott); 
ray.setSurface(surf); 
ray.setSsp(ssp); 
ray.reset(); 

intj = 0; 

// record start time 
Date timecheck = new Date(); 

// print out a VRML header 
System.out.prmtln(PrintVRML.header()); 
System.out.prmtm(PrmtVRML.navigatioiuhfo()X 
System. out.prmtln(PrintVRML.directionalLight()); 
System.out.rjrintln("\nlnline{url[\"Header.wrlV,]}\n''); 

// call each class' VRML print routine 
System.out.print]n(bott.VRMLBottom()); 
System.out.println(surf.VRMLSurface()); 

// propagate the ray and print it 
System.out.println("Transform {"); 
System.out.println(" rotation 1 0 0 3.14"); 
System.out.println(" children"); 

System.out.println("Shape {"); 
System.out.println(" appearance Appearance {"); 
System.out.println("    material Material {"); 
System. out.println("     emissiveColor 1.0 0.0 0.0"); 
System.out.println("      difiuseColor 0.0 0.0 0.0"); 
System.out.println("    }"); 
System.outprintln(" }"); 
System.out.println(" geometry IndexedLineSet {"); 
Systemout.println("    coord Coordinate {"); 
System.out.println("     point ["); 
j = 0; 

// Record first point always 
ray.recordPoint(); 

while (ray.getTimeO < 8.0) { 

//   Propagate all rays through one time step 
ray.Propagate(.006); 

//   If any ray has reflected then record all of the 
//   points in the beam 
if (ray.reflected()) { 

ray.recordPointO; 

} 

//   If the curvature sum reaches the limit, record 
//   all of the points in the beam 
if (ray.totalCurvatureO > .022 ) { 

ray.recordPoint(); 

} 
} 

160 



// Record last point always 
ray .recordPoint(); 

// Print the positions stored in each ray 
for ö=0; j<ray.getCount(); j += 1) { 

System.out.print(ray.position(j)); 

} 

System.out.println("     ]"); 
System.out.println("    }"); 
System.out.println("   coordlndex ["); 

// Define the segments of the ray 
forü=0;j<ray.getCount(); j++) { 

System.out.println(j); 

} 
System.out.println("   ]"); 
System.out.println(" }"); 
System.out.println("}"); 
System.out.println("}"); 

System. out.rmntln(PrmtVRML.printLegendView(',ExampleRay", 
" This is an example ray.", 
"It has an initial elevation", 
"of 80 degrees from", 
"vertical and 20 degrees", 
"west of north.", 
-500, -500,15000)); 

// record stop time 
Date timecheck2 = new Date(); 

System.out.println( "# " + timecheck); 
System.out.println( "# " + timecheck2 ); 

} 
} 

F.       PINGER.JAVA 

/* 
File: Pinger.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import java.util.Date; 

import mil.navy.nps.rra.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.nayy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 

*<dtxb>Location:</b> 
*<dd><ahref="http://www.sti.nps.navy.nn^dis-java-vrrnl/mil/navy/nps/rra/PmgCT 
* http://www. sÜ.nps.navy.mil/<üs-java-vrml/mil/navy/nps/rra/Pinger.java</a> 
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*<dtxb>Hierarchy Diagram:</b> . 
*<dd><ahre^"images/RRAClassffierarchy.gif,><MGSRC="images/REAClassHierarchyButton.jpg 

ALIGN=ABSCENlERx/a> 
« 
*<dtxt»Coordinate System Diagram:</b> 
*<ddxa href^"images/CoordinateSystem.gif 'xIMG SRC="images/CoordinateSystemButtoii.jpg" 

ALIGN=ABSCENTERx/a> 

*<dtxb>Summary:</b> 
*<dd>This stand alone program initializes the environment (bottom, surface and 
* SSP) and the sonar array radiation lobe. 
* 
*<dtxb>Explanation:</b> 
*<dd>This program provides a template for running a stand-alone simulation 
* that can run without user interaction to generate sonar pings and returns for a 
* virtual world.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Jan98 /Timothy M. Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 
* 
*@see Lobe 
*/ 

public class Pinger { 

public static final double MDSHMUMX = -5000; 
public static final double MNIMUMZ = 4000; 
public static final double MAXIMUMZ = 5000; 
public static final double MAXMUMX = -4000; 
public static final double NORTH = 000.0; 
public static final double SOUTH = 180.0; 
public static final double EAST =090.0; 
public static double deltaTime = .8; // in seconds 
public static double lastZLane = 4950; 
public static Vec3d position = null; 
public static Vec3d deltaPosition = null; 
public static Vec3d velocity = null; 
public static double orientation = 0.0; 

/** 
* This method initializes the environment and the sonar Lobe and 
* has the VRML reprsentation of each written to the console. 
*/ 
public static void main(String[] args) { 

// Position velocity and orientation in Ziomek Coordinate System 
position = new Vec3d( -5000, 50, lastZLane); //in meters 
deltaPosition = new Vec3d( 0,0,0); //in meters 
velocity = new Vec3d( 2.8,0,0); // in m/s which is 5 kts 
orientation = NORTH; // in degrees 

SSP ssp  = new SSP("constant"); 
Bottom bott = new Bottom("noslope",100); 
Surface surf = new Surface("smooth"); 

Targete targets = new Targets(surf,bott,MAXMUMX,MI^^ 

lobe.setElevation(90); 
lobe.setAzimuth(0); 
lobe.setLobeWidthY(40); 
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lobe.setLobeWidthX(52); 
lobe.setNumberYPartition(4); 
lobe.setNum.berXPartition(4); 
lobe.setDuration(l); 
lobe.setBottom(bott); 
lobe.setSurface(surf); 
lobe.setSsp(ssp); 
lobe.setEndTime(. 133); // 200m/l 500m/s 

// record start time 
Date timecheck = new Date(); 

while (notDoneSearchingO) { 
lobe.setPosition(position); 
lobe.setAzimuth(orientation); 
lobe.reset(); 

//System.out.println("calculating"); 
lobe.calculateLobe(targets); 
updateVehiclePosition(); 

} 

targets.printMineStatistics(); 
// record stop time 
Date timecheck2 = new Date(); 

Systemout.println( "# " + timecheck); 
System.out.println( "# " + timecheck2 ); 

} 

pubhc static boolean notDoneSearchingO { 
if (position.get(2) <= MINMUMZ) { 
return false; 

} 
else { 
return true; 

} 
} 

public static void updateVehiclePosition () { 
if (orientation = NORTH) { 
if(position.get(0)>=MAXMUMX) { 

orientation = EAST; 
velocity.set(0,0,-2.8); 
position.print(); 

} 
} 
else if (orientation == SOUTH) { 
if (position.get(0) <= MINIMUMX) { 

orientation = EAST; 
velocity.set(0,0,-2.8); 
position.print(); 

} 
} 
else if (orientation == EAST) { 

if(position.get(2)<=(lastZLane-100.0)) { 
if (position.get(0) >= MAXMUMX) { 

orientation = SOUTH; 
position.print(); 
velocity.set(-2.8,0,0); 

} 
else { 
orientation = NORTH; 
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velocity.set(2.8,0,0); 
position.print(); 

} 
lastZLane = position. get(2); 

} 
} 
deltaPosition.set( velocity); 
deltaPosition. scale(deltaTime); 
position.add(deltaPosition); 

} 
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APPENDIX C. CLIENT SERVER CODE 

A.       BATTLESCENE.JAVA 

/* 
File: BattleScene.java 
Compiler: jdkl.l .6, Netscape 3.0, WorldView 2.0 
*/ 

importjava.net.*; 
import java.io.*; 
import java.util.*; 
import vrml.*; 
import vrml.node.*; 
import vrml.field.*; 

import mil.navy.nps.rra.*; 

/** 

*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http://www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dt><b>Location:</b> 
*<dd><ahref='Tittp://www.sti.nps.navy.miydis-java-vr^ 
* http://www. sfl.nps.navy.mil/öis-java-vnnl/mil/navy/nps/rra/BattleScene.java</a> 
* 
*<dtxb>Summary:</b> 
*<dd>Interfaces between the browser and pinserver. This script also provides for 
* platform' mobility and controls all timing of the interactions between ping 
* requests, VRML returns and platform movement. 
* 
*<dtxb>Explanation:</t» 
*<dd>A VRML world is in essence a static world, with some basic movements. To be able 
* to emulate more real world processes the VRML world needs to have a script 
* connection to a program running outside of the VRML rendering engine, that is 
* running in the browsers virtual machine. This program is that extension of a 
* particular VRML world. It also provides network connections to a sonar ping 
* server runing on a separate computer. This network connection is provided since 
* both rendering VRML and calculating real-time sonar are computationally intensive. 
* Thus, the two functions are distributed two two machines over the net.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Jan98 /Timothy M. Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 
* 
*@see BridgeServer 
*@see PingServer 
*/ 

public class BattleScene extends Script implements Timed { 

// Browser Specific Stuff 
private Browser browser, 
ControlPanel panel; 
MFNode addChildren, removeChildren; 
MFNode addBeamChildren, removeBeamChildren; 
SFVec3fbeamTranslation; 
SFFloat yaw, 
SFVec3f translation; 
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SFFloat beamYaw, 
BaseNode nodesf] = null; 
private BaseNode oldBeamNodes[]Q = {nufl,null,null,null,null}; 
private BaseNode oldTargetsNodes[][] = {null,mül,nulLnull,null}; 
private int activeBeamNcde = 0; 
private int activeTargetsNode = 0; 

//Network specific stuff 
public final static int PORT = 4129; 
public final static String HOST = "localhost"; // server host name 
public final static float SET_SONAR_PARAMETERS = (floatp.O; 
public final static float DETECT_TARGETS = (float)l.O; 
public final static float DETECTJBEAM = (float)2.0; 
public final static float DETECT_BOTH = (float)3.0; 
Socket socket = null; 
DatalnputStream in = null;    // input stream from server to client 
DataOutputStream out = null;  // output sream from client to server 

// Gereral Stuff specific to the vehicle in question 
private final static boolean DEBUG = true; 
private final static boolean LOCAL = false; 
private final static float START_DEPTH = 500; 
private final static float START_X_POS = -5000; 
private final static float START_Y_POS = 0; 
private float orderedSpeed = 0; 
private float orderedDepth = 0; 
private float orderedCourse = 0; 
private float position!] = new float[3]; // naval coordinate system 
private float drPosition[] = new float[3]; // naval coordinate system 
private float heading = 0; 
private float drHeading = 0; 
private float speed = 0; 
private float drSpeed = 0; 
private float depth = STARTJDEPTH; 
private float drDepth = 0; 

//Timing specific stuff 
private final static int interval 100; 
private int tickCount = 0; 
private int pingOrderTick = 0; 
public boolean createVRMLThreadRunning = false; 
private float pinglnterval = (float)4.0; 
private CreateVRMLBeamThread beamThread = null; 
private CreateVRMLTargetsThread targetsThread = null; 

I** 
* This method initializes the Java script. It establishes connections 
* to the browser, the control panel, the timer and to BridgeServer. 
*/ 
public void initialize(){ 

if (DEBUG) 
System.out.println("BattleScene: initialize: starting"); 

// Connects to the browser and various VRML nodes in the browser 
browser = getBrowser(); 
// get the reference to the target node. 
Node root = (NodeX(SFNode)getField("root")).getValue(); 
Node manta = (NodeX(SFNode)getField("manta")).getValue(); 
Node beam = (NodeX(SFNode)getField("beam")).getValue(); 

// Initiates the control panel 
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panel = new ControlPanel(this);        // start the panel. 

// get the references to exposed fields, event-in/outs in the VRML nodes. 
addChildren = (MFNodeXoot.getEventIn("addChildren"); 
removeChildren = (MFNode>oot.getEven.thi("renioveChilclren"); 
addBeamChildren = (MFNode)beam.getEventIn("addChildren"); 
removeBeamChildren = (MFNode)beam.getEventln( "removeChildren"); 
beamTranslation = (SFVec3f)beam.getExposedField("translation"); 
beamYaw = (SFFloat)beam.getEventln("yaw"); 
translation = (SFVec3f)manta.getExposedField("translation"); 
position[0]= translation.getX(); 
position[l]= translation.getZ(); // translate from VRML to NAVAL system 
position[2]= -translation.getY(); 
yaw = (SFFloat)manta.getEventln("yaw"); 

if (ILOCAL) { 
// open socket connections and establish data streams with BridgeServer 
try{ 

// open network and input/output stream 
socket = new Socketflocalhost", PORT); 
in = new DatamputStream(socket.getInputStream()); 
out = new DataOutputStream(socket.getOutputStream()); 

} catch (UnknownHostException e) { 
browser.setDescriptionC'Unknown host:" + HOST); 

} catch (Exception e) { 
browser.setDescription("Connection error"); 

} 
} 

// initiate a callback timer 
new TimerThread(this,interval).start(); 

depth = position[2]; 
orderedDepth = depth; 

if (DEBUG) 
System.out.println("BattleScene: initialize: ending"); 

} 

/** 
* This method receives ticks from TimerThread and updates vehicle 
* position in the VRML scene. 
*/ 
public void tick(TimerThread t) { 

if (orderedSpeed-speed> .05) { 
speed+=0.1; 

} 
else if (orderedSpeed-speed < -.05) { 

speed —0.1; 
} 

if (orderedCourse-heading > .05) { 
heading+=0.1; 

} 
else if (orderedCourse-heading < -.05) { 
heading-=0.1; 

} 

position[0] += Math.cos(heading*3.14/180.0)*.l*speed; 
positionfl] += Mam.sin(heading*3.14/180.0)*.l*speed; 

167 



if (orderedDepth-depth > .05) { 
depth+=0.1; 

} 
else if (orderedDepth-depth < -.05) { 

depth—0.1; 

} 

position[2] = depth; 

if (tickCount++%10 == 0) { 
panel.updateShipState(heading, speed, depth); 
browser.setDescription(" X=" + (int)position[0] + 

"Y-' + (int)position[l] + 
" Z=" + (int)position[2]); 

updateVehiclePosition(); 

} 
} 

/** 
* This method calculates the position in the future that the vehicle 
* will be at-when the pulse is sent out. 
* 
* Since it takes a finite time to calculate sonar pings, all requests 
* made to the server are future requests. This method calculates the 
* vehicles position at that future position so that it matches the 
* sonar pings starting position 
*/ 
private void deadReckon(float interval) { 

float timer = 0; 
drPosition[0] = position[0]; 
drPositionfl] = position[l]; 
drPosition[2] = position[2]; 
drSpeed = speed; 
drHeading - heading; 
drDepth = depth; 

while (timer < interval) { 
if (orderedSpeed-drSpeed > .05) { 
drSpeed+=0.1; 

} 
else if (orderedSpeed-drSpeed < -.05) { 

drSpeed — 0.1; 

} 

if(orderedCourse-drHeading> .05) { 
drHeading+=0.1; 

} 
else if (orderedCourse-drHeading < -.05) { 

drHeading-=0.1; 

} 

drPositionfO] += Math.cos(drHeading*3.14/180.0)*.l*drSpeed; 
drPosition[l] += Math.sin(drHeading*3.14/180.0)*.l*drSpeed; 

if (orderedDepth-drDepth> .05) { 
drDepth+=0.1; 

} 
else if (orderedDepth-drDepth < -.05) { 

drDepth —0.1; 

} 

drPosition[2] = drDepth; 
timer+=0.1; 
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} 
} 

/** 
* This method processes events generated by the VRML Browser. 
* When the VRML world is entered, an 'entered' event is sent out 
* and this event handler processes it and starts the whole 
* simulation in motion. 
*/ 
public void processEvent(Event ev){ 

if (DEBUG) 
System.out.println("BattleScene: processEvent: starting"); 

if(ev.getName0.equalsCentered")){ 
ConstSFBool v = (ConstSFBool)ev.getValue(); 

String receivedString = "#VRML V2.0 utf8\n"; 

// get VRML data from whichever source it is necessary 
if (1LOCAL) { 

try{ 
boolean start = true; 

// send start Order 
out.writeBoolean(start); 

// receive new VRML from server 
receivedString += in.readLine(); 

browser.setDescription("Got a String!"); 
} catch (IOException e) { 

browser. setDescription("IOException: " + e); 
} 

// create VRML and add it to the appropriate VRML node 
try{ 

nodes = browser.createVrmlFromString(receivedString); 
if (null!= nodes) { 

addChildren.setValue(nodes); 
} 

} 
catch (Exception e){ 

browser.setDescription("can not create VRML node"); 
e.printStackTrace(); 

} 
}//end DEBUG 

// initialize the control'panel and draw it 
if(v.getValue()){ panel.map();} 
else {panel.hide();} 

} 

if (DEBUG) 
System.out.println("BattleScene: processEvent: ending"); 

} 

/** 
* This method cleans up memory and closes sockets at shutdown 
*/ 
public void shutdown(){ 

panel.dispose(); 
try{ 
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out.close(); 
in.close(); 
socket.close(); 

} catch (Exception e) { 
browser.setDescription("Comiection close error"); 

} 
} 

/** 
* This method is called by the control panel to set the 
* requested maneuver in BattleScene. 
*/ 
public void setManeuver(float d, 

float s, 
float c) { 

orderedDepth = d; 
orderedSpeed = s; 
orderedCourse = c; 

} 

/** 
* This method is called by the control panel to set the 
* requested sonar ping inn BattleScene. 
*/ 
public void setSonarParameters(float elevation, 

float azimuth, 
float verticalBeamWidth, 
float horizontalBeamWidth, 
float verticalBeamConfiguration, 
float horizontalBeamConfiguration, 
float verticalSearchWidth, 
float horizontalSearchWidth, 
float pingl, 
float powerLevel){ 

if (DEBUG) 
System.out.println("BattleScene: setSonarParameters: starting"); 

pingmterval = pingl; 

if (ILOCAL) { 
browser.setDescriptionC'Sending Ping"); 
try{ 

out.writeFloat(SET_SONAR_PARAMETERS); 
out.writeFloat(position[0]); 
out.writeFloat(position[2]); 
out.writeFloat(-position[l]); 
out.writeFloat(elevation); 
out.writeFloat(-azimuth); 
out.writeFloat(verticalBeamWidth); 
out.writeFloat(horizontalBeamWidth); 
out. writeFloat( verticalBeamConfiguration); 
out.writeFloat(horizontalBeamConfiguration); 
out.writeFloat((pingI/(float)2.0)); 
out.writeFloat(powerLevel); 

} 
catch (Exception e) { 

browser.setDescription("IOException: " + e); 

} 
} 

if(DEBUG) 
System.out.println("BattleScene: setSonarParameters: endmg ); 
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} 

/** 
* This method is called by sonarDetection to decide if another 
* sonar request can be made. 

* Another sonar request cannot be made if the threads for 
* adding VRML beams and targets are still alive. 
* When the threads die this indicates that the VRML has been 
* added to the scene graph and another request can be made. 
*/ 
public void waitOnThreads(){ 
if (targetsThread != null && targetsThread.isAlive()){ 
try{ 

targetsThread.join(); 
} 
catch (MerruptedException e) { 

System.out.println("BattleScene: waitOnThreads: targetsThread "+e); 
} 

} 
if (beamThread != null && beamThread.isAlive()){ 
try{ 
beamThread.joinO; 

} 
catch (MerruptedException e) { 

System.out.printlnCBattleScene: waitOnThreads: beamThread: "+e); 
} 

} 
} 

/** 
* This method is called from the control panel to initiate a 
* sonar ping. When a ping is recieved and the required threads 
* die a new sonar request is made and the corresponding VRML is 
* received. 
*/ 
public void sonarDetection(fioat order) { 

if (DEBUG) 
System.out.printlnCBattleScene: sonarDetection: starting"); 

waitOnThreadsO; 
String receivedTargets =""; 
String receivedBeam =""; 

if (ILOCAL) { 
try{ 

// send Ping Order 
pingOrderTick = tickCount, 
System.out.printlnCBattleScene: sonarDetection: order = "+order); 
out.writeFloat(order); 

// receive desired vrml strings; 
if(order = DETECT_TARGETS) { 
receivedTargets = in.readLine(); 

} 
else if (order == DETECTBEAM) { 
receivedBeam = in.readLine(); 

} 
else if (order == DETECT_BOTH) { 

receivedTargets = in.readLine(); 
receivedBeam = in.readLine(); 

} 
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} 
catch (IOException e) { 

browser.setDescription("IOException: " + e); 

} 
} 
eise { 
// fill with fake VRML so that when the sonar server is being run 
// the local machine, the simulation wont bog down. Used for debugging. 
pingQrderTick = tickCount; 
receivedTargets = targets VRML(); 
receivedBeam = beamVRML(); 

} 

targetsThread = new CreateVRMLTargetsThread(this,browser); 
beamThread = new CreateVR2VlLBeamTrirea<l(this,browser,targetsThread); 

// perform a small wait if the sonar server is operating faster than 
// real time 
while (tickCount-pingOrderTick < (int)pinglnterval*10) { 
inti; 
for(i=0;i<10;i++){} 

} 

// start the threads to produce the VRML; 
if (order = DETECTTARGETS) { 
targetsThread.start(receivedTargets,oldTargetsNodes[(activeTargetsNode+l)%5]); 
updateBeamPositionO; 

} 
else if (order = DETECT_BEAM) { 

beamThread. start(recdvedBeam,oldBearnNodes[(activeBeamNode+l)%l]); 

} 
else if (order == DETECT_BOTH) { 

targetsThread. start(receivedTargets,oldTargetsNodes[(activeTargetsNode+l )%5]); 
teamTrn-ead.start(recdve<Beam,ol6Bearr^odes[(activeBeamNode+l)%l]); 
updateBeamPositionO; 

} 

if (DEBUG) 
System.out.println("BattleScene: sonarDetection: ending"); 

} 

/** 
* This method adds the beam VRML to the scene graph 
*/ 
public void AddBeamChildren(BaseNode nodes[]){ 

if (DEBUG) 
System.out.println("BattleScene: AddBeamChildren: starting"); 

activeBeamNode++; 
oldBeamNodes[activeBeamNode%l] = nodes; 
addBeamChildren.setValue(nodes); 

if (DEBUG) 
System.out.println("BattleScene: AddBeamChildren: ending"); 

} 

/** 
* This method decides whiche beam VRML to remove from the scene graph 
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*/ 
public void removeBeam() { 
waitOnThreads(); 
while (tickCount-pingOrderTick < (int)puiglaterval*20) { 
inti; 
for(i=0;i<10;i++){} 

} 
RemoveBeamChildren(oldBeamNodes[activeBeamNode%l]); 

} 

/** 
* This method removes the beam VRML from the scene graph 
*/ 
public void RemoveBeamChildren(BaseNode nodesf]) { 

if (DEBUG) 
System.out.println("BattleScene: RemoveBeamChildren: starting"); 

removeBeamChildren. setValue(nodes); 

if (DEBUG) 
System.out.println("BattleScene: RemoveBeamChildren: ending"); 

} 

/** 
* This method adds the target VRML to the scene graph 
*/ 
public void AddTargetsChildren(BaseNode nodes[]){ 

if (DEBUG) 
System.out.println("BattleScene: AddTargetsChildren: starting"); 

activeTargetsNode++; 
oldTargetsNodes[activeTargetsNode%5] = nodes; 
addChildren.setValue(nodes); 

if (DEBUG) 
System.out.println("BattleScene: AddTargetsChildren ending"); 

} 

/** 
* This method removes the target VRML from the scene graph 
*/ 
public void RemoveTargetsChildren(BaseNode nodes[]) { 

if (DEBUG) 
System.out.println("BattleScene: RemoveTargetsChildren: starting"); 

removeChildren.setValue(nodes); 

if (DEBUG) 
System.out.println("BattleScene: RemoveTargetsChildren: ending"); 

} 

private void updateVehiclePosition() { 
float transformPositionQ = new float[3]; 
transformPosition[0] = position[0]; 
transformPosition[l] = -position[2]; 
transformPosition[2] = position[l]; 

173 



traBslation.setValue(transfonnPosition); 
yaw.setValue(heading*(floatX-3.14/180)); 
return; 

} 

private void updateBeamPosition() { 
float traiisfcnmPositionfl = new float[3]; 
transformPosition[0] = positionfO]; 
transformPosition[l] = -position[2]; 
transfonnPosition[2] = positionfl]; 

beamTranslation.setValue(transfonnPosition); 
beamYaw.setValue(drHeading*(float)(-3.14/180)); 
return; 

} 

private String targetsVRML() { 
return "Transform {"+ 

" translation"+ (drPosition[0]+Math.cos(-drHeading)*50)+""+ 
(-drPosition[2])+""+ 
(drPosition[l]+Math.sin(-drHeading)*50) + 

chüdren ["+ 
Shape {"+ 

appearance Appearance {"+ 
material Material {"+ 

emissiveColor 1.0 0 0"+ 
}"+ 

}"+ 
geometry Sphere { radius 20}"+ 

}"+ 

} 
}" 

private String beamVRML() { 
return "Transform {"+ 

" translation 50 50 0"+ 
" children ["+ 
"    Shape {"+ 
"     appearance Appearance {"+ 

material Material {"+ 
emissiveColor 0 1.0 0"+ 

}"+ 
}"+ 

"      geometry Sphere { radius 20}"+ 
"    }"+ 
„ r+ 

"}"; 

B.        BRTOGESERVER.JAVA 

File: BridgeServer.java 
Compiler: jdkl.1.6 
*/ 

package mil.navy.nps.rra; 
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importjava.net.*; 
import java.io.*; 
import javautil.*; 

import mil.navy.nps.rra.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

http7/www.stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahref="http://www.sti.nps.navy.rml/dis-java-vr^ 
* http://www.sti.nps.navy.rml/dis-java-^ 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd><ahref^"images/PJlAClassHierarchy.gif'><^ 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<dd><ah^efi''images/CoordinateSystem.gif'><MGSRC=''images/CoordmateSystemButton.jpg', 

ALIGN=ABSCENTERx/a> 
* 
*<dt><b>Sumrnary:</b> 
*<dd>Takes requests for sonar pings and passes them to PingServer and receives VRML 
* from the PingServer and returns it to BattleScene. 
* 
*<dtxb>Explanation:</b> 
*<dd>Since calculation of numerous ray trajectories is extremely time intensive, rendering and 
* ray tracing need to be on separate computers. This provides an interface from the rendering methods 
* to the ray tracing methods. The use of this intermediate bridge avoids the security 
* issues that are present in most browsers.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Jan98 /Timothy M. Holliday /New 
*<dd> 17Mar98 /Timothy M. Holliday /Added HTML comment convention 
* 
*@see PingServer 
*@see BattleScene 
*/ 

public class BridgeServer{ 
public final static int PORT = 4129; 
public final static int REMOTEJPORT = 4130; 
public final static float SET_SONAR_PARAMETERS = (float)0.0; 
public final static float DETECTTARGETS = (float)l.O; 
public final static float DETECTJBEAM = (float)2.0; 
public final static float DETECT_BOTH = (float)3.0; 
public static DatalnputStream remoteln = null; 
public static DataOutputStream remoteOut = null; 
public static DatalnputStream in = null; 
public static PrintStream out = null; 
public final static String HOST = "electric.stl.nps.navy.mil"; // remote server host name 

/** 
* The main loop of the bridge program. It accepts input and output until its 
* network connections are dropped or the program is killed by the user. No arguments 
* are expected. 
/** 
public static void main(String[] args){ 

// Declare Network specific variables to browser 
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ServerSocket server_socket = null; 
Socket client_socket = null; 
boolean r = true; 
float serviceRequest = (float)-1.0; 

// Network specific variables to remote host 
Socket remoteSocket = null; 

// Sonar Ping specific variables 
int i = 0; 
int j = 0; 
Vec3d pos = new Vec3d(); 

System.out.printin("Start server " + PORT); 

// Declare the socket to connect to BattleScene 
try{ 

server_socket = new ServerSocket(PORT); 
} catch(IOException e){ 

System.out.println("Could not create socket on:" + PORT + "," + e); 
System.exit(l); 

} 

System.out.println("Socket created:" + PORT); 

// request to open socket and data streams to the PingServer 
try{ 
// open network and input/output stream 
remoteSocket = new Socket(HOST, REMOTE_PORT); 
remotein = newDataInputStream(remoteSocket.getInputStream()); 
remoteOut = new DataOutputStream(remoteSocket.getOutputStream()); 

} catch (UnknownHostException e) { 
System.out.printin("Unknown host:" + HOST); 

} catch (Exception e) { 
System.out.println("Connection error"); 

} 

System.out.printin("Waiting for client..."); 

// accept BattleScene request for establishing a socket connection 
try{ 

client_socket = server_socket.accept(); 
} catch(IOException e) { 

System.out.prmtln("Accept faüed:" + PORT +"," + e); 
System.exit(l); 

} 

System.out.println("Connection established:" 
+ client_socket.getInetAddress()); 

System.out.println("Open input/output stream..."); 

// establish data streams to and from the BattleScene 
try{ 

in = new DataInputStream(chent_socket.getInputStream()); 
out = new PrintStream(client_socket.getOutputStream()); 

} catch (IOException e) { 
System.outprintln("Could not create input/output stream on:" 

+ PORT+\" + e); 
Svstem.exit(l); 

} ' 

// wait for a signal from client to begin 
Systemout.println("Reading data from client..."); 
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try { 
r = in.readBoolean(); 
remoteOut.writeBoolean(r); 
Svstem.out.println("Relayed a Start Request"); 

} " 
catch (IOException e) { 

System.out.println("Could not read data."); 
Svstem.exit(l); 

} ' 

// returning data Environment data from PingServer to BattleScene 
try{ 

String tempString = remoteIn.readLine(); 
System.out.println(" Relaying new VRML environment"); 
out.println(tempString); 

} 
catch (IOException e) { 

System.out.println("Could not read data."); 
System.exit(l); 

} 

// Start an infinite loop of accepting ping requests and returning VRML objects 
while(true){ 

System.out.println("Reading data from client..."); 
try{ 

serviceRequest = in.readFloat(); 
remoteOut.writeFloat(serviceRequest); 
if (serviceRequest == SET_SONAR_PARAMETERS) { 

setParameters(); 

} 
else if (serviceRequest == DETECTTARGETS) { 

System.out.println("Relaying a Ping Request..."); 
String tempString = rernoteIn.readLine(); 
System.outprintln(" Relaying detection field VRML..."); 
out.println(tempString); 

} 
else if (serviceRequest == DETECTJBEAM) { 

System.out.println("Relaying a Ping Request..."); 
String tempString = remotelnreadLineQ; 
System.out.println(" Relaying VRML Beam..."); 
out.println(tempString); 

} 
else if (serviceRequest == DETECT_BOTH) { 

System.outprintln("Relaying a Ping Request..."); 
String tempString = remoteIn.readLine(); 
System.out.print]n(" Relaying detection field VRML..."); 
out.println(tempString); 
tempString = remoteIn.readLine(); 
System.out.println(" Relaying VRML Beam..."); 
out.println(tempString); 

} 

} catch (IOException e) { 
System.out.println("Could not read data"); 
Svstem.exit(l); 

} " 
} 

} 

/* 
* This method sends the pertainant data to PingServer 
* from BattleScene 
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*/ 
private static void setParameters () { 

try{ 
remoteOut.writeFloat(in.readFloat()); 
remoteOut.\vriteFloat(in.readFloat()) 
remoteOut.writeFloat(in.readFloat()): 
remoteOut.writeFloat(in.readFloat()) 
remoteOut.writeFloat(in.readFloat()): 
remoteOut.writeFloat(iii.readFloat()): 
remoteOut.writeFloat(in.readFloat()); 
remoteOut.'writeFloat(in.readFloat()): 
remoteOut.writeFloat(in.readFloat()); 
remoteOut.writeFloat(in.readFloat()): 
remoteOut.writeFloat(in.readFloat()): 

} 
catch (Exception e) { 

System.out.println("Could not read data"); 
System.exit(l); 

} 

} 
} 

PINGSERVER.JAVA 

/* 
File: PingServer.java 
Compiler. jdkl.1.6 
*/ 

package mil.navy.nps.rra; 

import java.net. *; 
import java.io.*; 

import mil.navy.nps.rra.*; 

/** 
*@version 1.0 
*@author LT Timothy M. Holliday (<A HREF="http://www.stl.nps.navy.mil/~auv/holliday"> 

httpy/www. stl.nps.navy.mil/~auv/holliday</A>) 
* 
*<dtxb>Location:</b> 
*<dd><ahref="http://w\w.stl.nps.navy.rrri^^ 
* http://www.stl.nps.navy.rniycus-java-vniu^^ 
* 
*<dtxb>Hierarchy Diagram:</b> 
*<dd^<&bjef^"images/RRAClassHierarchy.gif'><M 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Coordinate System Diagram:</b> 
*<ddxa href="images/CoordinateSystem.gif'xMG SRC="images/CoordinateSystemButton.jpg" 

ALIGN=ABSCENTERx/a> 
* 
*<dtxb>Summary:</b> 
*<dd>Takes requests for sonar pings and returns VRML representations of the sonar ping and 
* any detections made. 
* 
*<dtxb>Explanation:</b> 
*<dd>Since calculation of numerous ray trajectories is extremely time intensive, rendering and 
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* ray tracing often need to be on separate computers to improve performance times. This provides an interface 
from the rendering methods 
* to the ray tracing methods.<P> 
* 
*<dtxb>History:</b> 
*<dd> 15Jan98 /Timothy M. Holliday /New 
*<dd> 17Mar98/Timothy M. Holliday /Added HTML comment convention 
* 
*@see Lobe 
*/ 

class PingServer{ 

public final static int PORT = 4130; 
public final static float SET_SONAR_PARAMETERS = (float)0.0; 
public final static float DETECTJTARGETS = (fioat)l.O; 
public final static float DETECT_BEAM = (float)2.0; 
public final static float DETECT_BOTH = (float)3.0; 

public static void main(String[] args){ 

// Network specific variables 
ServerSocket server_socket = null; 
Socket client_socket = null; 
DatalnputStream in = null; 
PrintStream out = null; 
boolean r = true; 
float serviceRequest = (float>1.0; 

// Sonar Ping specific variables 
int i = 5; 
intj= 110; 
Vec3d pos = new Vec3d( -5000, 500,0); 
SSP ssp  =newSSP("traditional"); 
Bottom bott = new Bottom("slope",2000); 
Surface surf = new Surface("smooth"); 
Lobe lobel = newLobe(); 
lobel .setDuration(l); 
lobel .setBottom(bott); 
lobel.setSurface(surf); 
lobel.setSsp(ssp); 

//(double)j, 10, (double)i, 1.0,10,10, 
// pos, 2, bott, surf, ssp, 
// 4); 

Targets targets = new Targets(surf,bott,70,0); 

// call each class' VRML print routine 
System.out.println("Start server:" + PORT); 

// open socket on PORT 
try{ 

server_socket = new ServerSocket(PORT); 
} catch(IOException e){ 

System.out.println("Could not create socket on:" + PORT +"," + e); 
System.exit(l); 

} 

System.out.println("Socket created:" + PORT); 
System.out.println("Waiting for client..."); 

// accept client's request 
try{ 

client_socket = server_socket.accept(); 
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[ catch(IOException e) { 
System.out.println(''Accept faüed:" + PORT + "," + e); 
System.exit(l); 

System.out.println("Connection established:" 
+ client_socket.getInetAddress()); 

System.out.println("Open input/output stream..."); 

try{ 
in = new DataInputStream(client_socket.getInputStream()); 
out = new PrintStream(client_socket.getOutputStream()); 

} catch (IOException e) { 
System.out.println("Could not create input/output stream on:" 

+ PORT + \" + e); 
System.exit(l); 

} 
// wait for a signal from client to begin 

System.outprintln("Reading data from client..."); 
try{ 
r = in.readBoolean(); 
System.out.println("Received a Start Request"); 

} 
catch (IOException e) { 

System.out.println("Could not read data."); 
Svstem.exit(l); 

} " 

bott.setAppendLineFeed(false); 
surf.setAppendLineFeed(false); 
System.out.print)n(" Sending new VRML environment"); 
String tempString = bott. VRMLBottom(>*-surf. VRMLSurface(); 
out.println(tempString); 

lobel .setAppendLineFeed(false); 

while(true){ 
System.out.prmtln("Reading data from client..."); 
try{ 

serviceRequest = in.readFloat(); 
if (serviceRequest = SET_SONAR_PARAMETERS) { 

setParameters(lobel, in, pos); 

else if (serviceRequest = DETECTTARGETS) { 
System. out.println("Received a Ping Request..."); 
lobel .calculateLobe(targets); 
System.outprintln(" Sending detection field VRML..."); 
out.println(lobel .detection VRML()); 

else if (serviceRequest = DETECT_BEAM) { 
System.out.println("Received a Ping Request..."); 
lobel .calculateLobe(targets); 
System.out.println(" Sending VRML Beam..."); 
out.println(lobel .dynamic VRML()); 

else if (serviceRequest = DETECT_BOTH) { 
System.out.println("Received a Ping Request..."); 
lobel .calculateLobe(targets); 
System.out.println(" Sending detection field VRML..."); 
out.println(lobel .detectionVRML()); 
System.out.prmtln(" Sending VRML Beam..."); 
lobel .setNumberYPartition(l); 
lobel.setNumberXPartition(l); 
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lobel.resetQ; 
lobel .calculateLobe(targets); 
out.println(lobel .dynamic VRML()); 

} 

} catch (IOException e) { 
System.out.println(nCoiild not read data"); 
Svstem.exit(l): 

} 
} 

} 

private static void setParameters (Lobe lobel, 
DatalnputStream in, 
Vec3d pos) { 

try{ 
pos. set((double)in.readFloat(), 

(double)in.readFloat(), 
(double)in.readFloat()); 

float elevation = in.readFloat(); 
float azimuth = in.readFloat(); 
float verticalBeamWidth = in.readFloat(); 
float horizontalBeamWidth = in.readFloat(); 
float verticalBeamConfiguration = in.readFloat(); 
float horizontalBeamConfiguration = in.readFloat(); 
float pinglnterval = in.readFloat(); 
float powerLevel = in.readFloat(); 
lobel .setElevation(elevation); 
lobel .setAzimuth(azimuth); 
lobel .setLobeWidthY(verticalBeamWidth); 
lobel .setLobeWidthX(horizontalBeamWidth); 
lobel.setNumberYPartition((int)verticalBeamConfiguration); 
lobel.setNumberXPartition((mt)horizontalBeamConfiguration); 
lobel .setPosition(pos); 
lobel .setEndTime(pingInterval); 
lobel.reset(); 
System.out.println("Beam azimuth angle "+azimuth); 
Svstem.out.println("Beam elevation angle "-(-elevation); 

} " 
catch (Exception e) { 

System.out.println("Could not read data"); 
System.exit(l): 

} 
} 

} 
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APPENDIX D. TACTICAL VISUALIZATION POWER POINT SLIDE SET 

A.       INTRODUCTION 

This appendix presents the annotated slide set for a Manta tactical visualization scenario. This 

slide set gives an overview of the Manta design, a presumed tactical scenario and how the scenario 

develops. This slide set is integrated with the Hyper Text Mark-up Language (HTML) and Virtual Reality 

Modeling Language (VRML) web pages shown in Appendix E. 
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Tactical Visualization 
of the Environment: 

Manta Minefield Search 

Don Brutzman 

Naval Postgraduate School 

brutzman@nps. navy.mil 

September 97 

The purpose of this project is to examine a 
Manta minefield search mission. We will show 
how tactical visualization of the environment 
improves mission planning and understanding. 

You are reading a PowerPoint presentation. 
It corresponds to the 2D/3D slide show written 
in HTML (the Hypertext Markup Language) 
and VRML (the Virtual Reality Modeling 
Language). 

Annotations for each slide describe MPEG 
video dialog and VRML scene viewpoints. 
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Manta Tactical Visualization 

I Goal: study tactical encounter in 2D & 3D 

I Produced by NPS faculty and students for 
Naval Undersea Warfare Center (NUWC) 
2D Hypertext Markup Language (HTML) 
» Links to other information placed in context 

3D Virtual Reality Modeling Language 
(VRML) scenes 
»-Links, multiple viewpoints and animation in 3D 

Left video: Principal investigator. 

"This is a realistic scenario, both for 
submarines and for multiple Mantas. " 

VRML scene:     Simple Manta model plus 
moving sonar beam and spatialized sound. 
Green is detection, red is counterdetection. 

Viewpoints: Manta close-up, over-the-shoulder 
view, looking back towards Manta sonar beam, 
Manta plus sonar from 1000m off track. 
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NUWC sponsor Erik Chaum 
Principal investigator Don Brutzman 

Theatre Commander  RADM Marsha Evans USN 

Thesis, OOD LT Tim Holliday USN 

Commanding Officer CDR Mike Holden USN 

Weapons Officer        LT Ben McNeal USN 

Sonar Officer LT Kevin Byrne USN 
Intelligence Officer    CPT Russell Storms USA 

Erik Chaum works in NUWC Code 22. 
He supervised the design and construction of the 
Warfare Systems Presentation Facility (WSPF). 

Don Brutzman is a computer scientist and assistant 
professor at NPS. His research interests include 3D 
graphics, underwater robotics and internetworking. 

RADM Marsha Evans USN is NPS Superintendent. 

(This is an optional link from the web page. 

There is no corresponding VRML scene.) 
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I Intelligence report, deployment decision by 
theater commander 

I SSN arrives on station, Mantas are deployed 

I Minefield searched & mapped by 4 Mantas 

Diesel sub found torpedo fire/counterfire 
Enemy torpedo versus NPS low-cost 
acoustic torpedo counter-measure 
Mission completion report, Mantas & SSN 

Left video: Principal investigator. 

"All of the robot searches and software shown 
in this mission can be demonstrated today. 
We are using existing capabilities of the NPS 
Phoenix AUV." 

VRML scene:     A 25-meter Manta searching 
for a much smaller 1-meter mine. A white 
vertical marker helps viewers locate the mine. 

Viewpoints:        Over-the-shoulder view, 
Manta plus sonar beam 1000m off search track, 
Manta close-up, looking back towards Manta 
sonar beam. 
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Manta Design Assumptions 

■ Length: 80 feet. Endurance: several days. 
■ Optimum search speed versus mines, 

bottomed diesel: 5 knots 

■ Single Manta search rate: 1 km2/hour 

■ Payload: sensors, light-weight torpedoes, 
countermeasures 

■ Acoustic communications: reports, 
occasional coordination only 

Left video: Principal investigator. 

"A variety of potential Manta designs are being 
evaluated by NUWC engineers. " 

VRML scene:      Simple Manta model plus 
moving sonar beam and spatialized sound. 

Viewpoints:        Manta Close-up, 
Manta plus sonar beam, Manta Aft Port View, 
Manta Fore Port View. 
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I Hostile aggression by Orange Nation 

Amphibious landing in Tangerine Harbor 

USS MONTEREY needed: Manta vehicles 
Covertly map enemy harbor for mines, subs 

Tactical problem is well-suited to multiple 
Manta search 

Realistic scenario, cannot be performed 
covertly by today's fleet 

Left video: Principal investigator. 

"The slides, scenes & videos in the rest of this 
presentation walk you through the entire Manta 
tactical encounter." 

VRML scene:     A simple VRML sphere 
wrapped with an image texture of the Earth. 
Geographic maps of Tangerine Harbor and 
SUBLANT Norfolk are hidden inside. 

Viewpoints: Click Earth to see maps appear. 

189 



Intelligence Report 

■ One diesel sub plus 100 mines protect the 
hostile harbor 

■ Fleet commander preparing for amphibious 
assault 

■ Need rapid covert Manta mapping of 
minefield 

■ Call sent to Manta-capable attack 
submarine: USS MONTEREY 

Left video:          Intelligence officer, reporting 
to Admiral.   "Admiral, intelligence shows a 
dies el sub and 100 mines have been laid in 
Tangerine Harbor." 

Right video:        Theater commander. 

"That could delay the amphibious landing.  Get 
me the skipper of the Monterey on the satellite 
link." 

VRML scene:     Simple Manta scene. 
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Manta Mission Tasking 

! Admiral calls SSN commanding officer via 
satellite link 
>■ Get on station 

'-Prepare for Manta minefield search 

*■ Prepare for possible hostilities 

CO acknowledges, SSN dives & transits 

Left video: Theater commander. 
"Skipper, we need you to search Tangerine 
Harbor with your onboard Mantas.  We can't 
afford any delay in the amphibious invasion. " 

Right video:        Commanding officer.  "We 're 
on our way, Admiral... Officer of the Deck, take 
us down and proceed at flank speed to the 
landing zone at Tangerine Harbor. " 

VRML scene:     Highly detailed submarine at 
periscope depth. Mountains in background. 

Viewpoints: Multiple viewpoints: use 
PgUp/PgDn to walk camera around the sub. 
Click on periscope to lower it. 
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USS MONTEREY Arrives 

Theatre mission planning center prepares 
Manta mission package 
SSN location: safe standoff distance 
Periscope depth ops following rapid transit 
>~Nav fix, package download, intelligence update 

Get sound speed profile (SSP), visualize 
sonar effectiveness 

Verify mission packages, prepare for launch 

Left video: Intelligence officer. 

"The MONTEREY will only have 24 hours to 
map Tangerine Harbor.  We '11 evaluate search 
tactics using the virtual world. " 

VRML scene: 

Submarine proceeds to periscope depth (PD). 

Viewpoints: 

Sub 500m away, scope up at periscope depth. 
Close-up: sub approach to periscope depth. 
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I Four Maritas launch from submarine 

I SSN stays at max communication range to 
remain undetected 

Mantas complete transit to minefield and 
update SSP 

Mantas commence coordinated search 
Tactical analysis developed by NPS 
Undersea Warfare officers 

Left video: Officer of the Deck (OOD). 
"Captain, we 're on station, and the Manta 
mission package download is in progress. " 

Right video:        Commanding Officer (CO). 
"Weps, you may launch Mantas when ready. " 

Weapons Officer (Weps). 
"The boat is maintaining constant depth and 
speed... Mantas away." 

VRML scene:     Two of four Mantas are 
shown separating from the forward hull and 
proceeding to the search area. 

Viewpoints:        Various camera angles. 
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Manta Minefield Search 

■ Visualize large-scale minefield search 
■ Visualize small-scale Manta sensor 

interactions 
■ Monitor progress of long-term search in 

three dimensions 

■ All real-world data has corresponding place 
in virtual world 

■ Expect better operator sense of presence 

Left video:           Weapons Officer (Weps). 
"All Mantas are away, all communication links 
are up, and the Mantas are finding mines. " 

VRML scene:     This is an extended (24 hour) 
minefield search, reenacted by playing back the 
Manta mission scripts in the 3D VRML scene. 
After 100 mine boxes appear, Manta will start. 

Viewpoints:        A variety of camera angles 
allow big-picture visualization of a large      (10 
kilometer by 10 kilometer) harbor, as well as 
close-up views of Manta-mine interactions. Red 
bounding boxes & spheres help viewers 
visualize the search and localize small mines. 
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Diesel sub on bottom in minefield, awaiting 
landing force 

Manta reports diesel location to SSN and 
other Mantas 

Manta requests permission to fire 

Covert rules of engagement: self defense only 

If permission to fire not given, the diesel sub 
engages Manta 

Left video: Officer of the Deck (OOD). 
"Captain, Manta Alpha has found a diesel 
submarine and requests permission to fire. ". 

Commanding Officer (CO). 
"Permission denied.. Our current rules of 
engagement only allow firing in self defense. " 

VRML scene:     The Manta passes over a 
hostile diesel submarine hiding on the bottom. 

Viewpoints: Various aspects relative to 
submarine and Manta enable visualizing the 
encounter. 
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Fire / Counterfire / 
Torpedo vs. Countermeasure 

Diesel sub fires torpedo at Manta 

Manta counterfires torpedo at diesel, evades 
Manta launches low-cost countermeasure 

Manta communication relay enables covert 
monitoring by SSN during engagement 

Low-cost DSP-based acoustic anti-torpedo 
countermeasure: ongoing NPS work for ONR 

Left video: Sonar:   "Torpedo in the water, 
launched from the diesel submarine. " 
Weps: "Second torpedo counterfired by Manta. " 
Sonar: "Manta is evading with countermeasures. " 
OOD:   "Manta 's torpedo is in terminal homing, 

on the diesel." 
Sonar:   "Loud explosion down the bearing of the 

diesel submarine." 

VRML scene:     This one-quarter proj ect shows 
embedded sound in a torpedo-countermeasure 
interaction. Click on the torpedo to start the run. 

Viewpoints:        Note NTDS symbols and 
equipment labels embedded in the environment. 
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Manta Mission Complete 

Mantas destroy diesel, evade counterfire 
and map minefield 

SSN reports mission complete to theatre 
commander 

Left video: Commanding Officer (CO). 
"Admiral, the minefield at Tangerine Harbor 
has been mapped, one diesel submarine has 
been destroyed, and all four Mantas are 
recovered & back on board. " 

Right video:        Theater commander. 

"Naval Postgraduate School student officers 
and faculty can make big contributions to real 
fleet challenges." 

VRML scene:     Manta search pings. 

Viewpoints:        Over-the-shoulder viewpoint. 
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Conclusions 

■ Mantas might perform essential missions 
■ Visualization conclusion: add networked 

3D graphics, vehicles, physics and sensors 
just like any other Web-based content 

■ "Building content" is better, more scalable 
than "programming" 

■ NPS ready (and eager!) to continue 
work for NUWC 

Our conclusions match the expected results of 
the NUWC-NPS research proposal. 

These dramatic results show that construction of 
composable physics-based 3D scenes is possible 
using VRML. Tactical visualization of the 
environment improves understanding for forces 
afloat and the engineering community ashore. 

The star of this show is 3D visualization. 
We have demonstrated the viability of 2D/3D 
tactical visualization of the environment. A lot 
of promising work lies ahead. 

198 

i 



Don Brutzman 

brutzman@nps. navy, mil 
http://www. stl. nps. navy. mil/~brutzman 

Code UW/Br Naval Postgraduate School 
Monterey California 93943-5000 USA 

408.656.2149 voice 
408.656.3679     fax 
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APPENDIX E. TACTICAL VISUALIZATION HTML DOCUMENTS 

A.       INTRODUCTION 

This appendix presents Hyper Text Mark-up Language (HTML), MPEG-2 digitized video and 

Virtual Reality Modeling Language (VRML) web pages which show how HTML and VRML may be 

combined to form a tactical scenario presentation system. One advantage to using VRML in the 

presentation system is that behaviors can be given to the objects in the scene. This allows the scene to 

have a time dependent nature, instead of being just a static picture. 
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APPENDIX F.   RRA API JAVADOC DOCUMENTATION 

A.       INTRODUCTION 

This appendix gives a sample of RRA API documentation produced by javadoc, a Sun 

Microsystems product. This program comes with the Java distribution. This program can process a Java 

package (collection of Java classes) and produce detailed and standardized reference documents. These 

documents come in the Hyper Text Mark-up Language format and thus can be read by any standard web 

browser. This documentation generation program allows fast development of a cohesive API, since all 

parties can have rapid access to the most up-to-date API documentation. 
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All  Packages     Index 

Class Hierarchy 
• class java.lang.Object 

o class rnil.navy.nps.rra.Beam 
o class mil.navy.nps.rra.Bottom 
o class mil.navy.nps.rra.ExampleBeamDvnamic 
o class mil.navy.nps.rra.ExampleBeamStatic 
o class mil.navy.nps.rra.ExampleLobeDynamic 
o class mil.navy.nps.rra.ExampleLobeStatic 
o class mil.navy.nps.rra.ExampleRay 
o class mil.navy.nps.rra.Lobe 
o class mil.navy.nps.rra.PrintVRML 
o class mil.navy.nps.rra.Ray 
o class mil.navy.nps.rra.SVP 
o class mil.navy.nps.rra.Surface 
o class mil.navy.nps.rra.Targets 
o class mil.navy.nps.rra. Vecjd 
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All Packages  Class Hierarchy This Package Previous Next  Index 

Class mil.navy.nps.rra.Beam 
j ava.lang.Obj ect 

I 
H mil. navy. nps. rra. Beam 

public class Beam 
extends Object 

Author: 
LT Timothy M. Holliday (http://www.stl.nps.naw.mil/~auv/holliday) 

Location: 
http://wv^w.stl.nps.naw.miydis-iava-vrml/mil/navy/nps/rra/Beam.java 

Hierarchy Diagram:  
ß&MA "Zfeetatcdf 

Coordinate System Diagram: 

$M9dc*a£a Sf&***4> 

Summary: 
Forms a beam from four rays, propagates the beam and can return a VRML 
representation of the beam. 

Explanation: 
Beams of energy can be considered to consist of bundles of rays. The energy in a 
bundle can be shown not to diverge from the bundle. Thus the energy in a bundle 
is constant and thus the product of the intensity and the area of the bundle 
perpendicular to direction of propagation is a constant as well. Therefore a beam 
is a fundemental building block for a lobe of a sonar pattern. 

History: 
15Nov97 /Timothy M. Holliday /New 
17Mar98 /Timothy M. Holliday /Added HTML comment convention 
12Apr98 /Timothy M. Holliday /Parameterless Constructors 
14Apr98 /Timothy M. Holliday /Simplified VRML Routines 
21 Apr98 /Timothy M. Holliday /Fixed Problem with 
calculateSoundPressureLevel 

See Also: 
Ray, BeamExampleStatic, BeamExampleDynamic, Bottom, Surface, Vec3d 
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• NONE 
JL 
.TIME 

» BeamQ 
Constructor for the Beam class. 

• calculateBeam(Targets) 
This method calculates the trajectory of the beam of energy enclosed by the 
defining rays of the beam tube. 

.calculateSoundPressureLeveKdoublennn, double, double, double) 
This method calculates the trajectory of the beam of energy enclosed by the 
defining rays of the beam tube. 

. dvnamicVRMLQ 
This method creates a dynamic VRML string shape that is the three dimensional 
representation of the beam pulse that is propogated. 

» getAppendLineFeedQ 
This is a static method that returns the current line appendage. 

» getAzimuthO 
This method returns the azimuthal angle. 

» getBeamNumberQ 
This returns BeamNumber. 

» getBottomQ 
This method returns the handle to the bottom object. 

. getDeltaTimeO 
This method returns the simulation time step. 

■ getPetectCountQ 
This method returns the total number of detects by the beam 

• getPetectEchoLevel(int) 
This method returns the echo level of the detected target 

• getPetectTimefinf) 
This method returns the detect time for a given detect in the beam 

» getPurationQ 
This method sets the duration of the sonar pulse. 

. getElevationQ 
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This method returns the elevation angle. 
> getEndTimeO 

This method returns the simulation end time. 
> getHalfBeamWidthXO 

This method returns the half beam width of the beam in the azimuthal direction. 
» getHalfBeamWidthYO 

This method returns the half beam width of the beam in the azimuthal direction. 
• getPositionQ 

This method returns the position of the beam. 
. getSspQ 

This method returns the handle to the sound speed profile object. 
» getSurfaceO 

This method returns the handle to the surface object. 
> pingTimerVRMLO 

This method returns a VRML timer string that contains the appropriate timing 
information for the beam 

» resetQ 
This method resets all of the beam parameters after instantiation has occurred 
since reuse is more time efficient than garbage collection and reallocation. 

• setAppendLineFeed(boolean) 
This is a static method used to indicate whether a line feed is desired at the end 
of every line. 

• setAzimuth(double) 
This method sets the azimuthal angle, which is the angle from the x-axis to the z- 
axis rotating about the y-axis. 

» setBeamNumberfinf) 
This method sets BeamNumber. 

• setBottom(Bottom) 
This method sets the handle to the bottom object. 

• setDeltaTime(double) 
This method sets the time step in the simulation. 

• setDuration(inf) 
This method sets the duration of the sonar pulse. 

• setElevation(double) 
This method sets the elevation angle, which is the angle from the y-axis to the x- 
axis rotating about the z-asris . 

• setEndTime(double) 
This method sets the simulation end time. 

• setHalfBeamWidthX(double) 
This method sets the half beam width of the beam in the azimuthal direction. 

• setHalfBeamWidthY(double) 
This method sets the half beam width of the beam in the elevation direction. 

• setPosition(double, double, double) 
This method sets the position of the beam. 

. setSsp(SSP) 
This method sets the handle to the sound speed profile object. 

• setSurface(Surface) 



This method sets the handle to the surface object. 
, staticVRMUint int) 

This method writes to the console a VRML shape that is the three dimensional 
representation of the beam that is propagated. 

• T_L 

public static final int T_L 

• TIME 

public  static  final  int TIME 

• NONE 

public static final int NONE 

• Beam 

public Beam{; 

Constructor for the Beam class. A beam is defined as the volume swept out by 
four rays as they traverse the ocean environment 

• reset 

public void reset() 

This method resets all of the beam parameters after instantiation has occurred 
since reuse is more time efficient than garbage collection and reallocation. 

• setAzimuth 

public void setAzimuth(double phi) 

This method sets the azimuthal angle, which is the angle from the x-axis to the z- 
axis rotating about the y-axis. 
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9 getAzimuth 

public double getAzimuth() 

This method returns the azimuthal angle. 

Ä setHalffieamWidthX 

public void setHalfBeamWidthX(double pHalfBeamWidthX) 

This method sets the half beam width of the beam in the azimuthal direction. 

9 getHaHBeamWidthX 

public double getHalfBeamWidthX() 

This method returns the half beam width of the beam in the azimuthal direction. 

• setElevation 

public void setElevation(double beta) 

This method sets the elevation angle, which is the angle from the y-axis to the x- 
axis rotating about the z-axis . 

9 getElevation 

public double getElevation() 

This method returns the elevation angle. 

• setHalfBeamWidthY 

public void setHalfBeamWidthY(double pHalfBeamWidthY) 

This method sets the half beam width of the beam in the elevation direction. 

• getHalffieamWidthY 

public double getHalfBeamWidthYO 

This method returns the half beam width of the beam in the azimuthal direction. 

9 setPosition 

public void setPosition(double x, 
double y, 
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double  z) 

This method sets the position of the beam. 

9 getPosition 

public Vec3d getPosition() 

This method returns the position of the beam. 

ft setDeltaTime 

public void setDeltaTime(double pDeltaTime) 

This method sets the time step in the simulation. 

• getDeltaTime 

public double getDeltaTime () 

This method returns the simulation time step. 

• setEndTime 

public void setEndTime(double pEndTime) 

This method sets the simulation end time. This value is reletive to the start time 
which is 0.0. 

ft getEndTime 

public double getEndTime() 

This method returns the simulation end time. 

ft setDuration 

public void setDuration(int duration) 

This method sets the duration of the sonar pulse. The integer refers to the 
number of deltaTime increments, currently only 1 or 2 are allowed. 

ft getDuration 

public  int  getDuration() 

This method sets the duration of the sonar pulse. The integer refers to the 
number of deltaTime increments. 
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ft setBottom 

public void setBottom(Bottom pBottom) 

This method sets the handle to the bottom object. 

ft getBottom 

public Bottom getBottom () 

This method returns the handle to the bottom object. 

ft setSurface 

public void setSurface(Surface pSurface) 

This method sets the handle to the surface object. 

ft getSurface 

public Surface getSurface() 

This method returns the handle to the surface object. 

ft setSsp 

public void setSsp(SSP pSsp) 

This method sets the handle to the sound speed profile object. 

ft getSsp 

public SSP getSspf) 

This method returns the handle to the sound speed profile object. 

ft setBeamNumber 

public void setBeamNumber(int number) 

This method sets BeamNumber. It is used to uniquely identify each beam for 
ROUTEing in VRML. 

ft getBeamNumber 

public int  getBeamNumber() 
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This returns BeamNumber. Which is used to uniquely identify each beam for 
ROUTEinginVRML. 

9 static VRML 

public String staticVRML(int colorChoice, 
int intensity-Choice) 

This method writes to the console a VRML shape that is the three dimensional 
representation of the beam that is propagated. 

9 dynamic VRML 

public String dynamicVRMLO 

This method creates a dynamic VRML string shape that is the three dimensional 
representation of the beam pulse that is propogated. 

9 calculateBeam 

public void calculateBeam(Targets targets) 

This method calculates the trajectory of the beam of energy enclosed by the 
defining rays of the beam tube. It also determines when there is a detection. 

• calcuIateSoundPressureLevel 

public void calcuIateSoundPressureLevel(double field[][][], 
double deltaRange, 
double deltaDepth, 
double frequency) 

This method calculates the trajectory of the beam of energy enclosed by the 
defining rays of the beam tube. 

•■ getDetectCount 

public int getDetectCount() 

This method returns the total number of detects by the beam 

9t getDetectTime 

public double getDetectTime(int N) 

This method returns the detect time for a given detect in the beam 
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Ä getDetectEchoLevel 

public double getDetectEchoLevel(int N) 

This method returns the echo level of the detected target 

• pingTimerVRML 

public String pingTimerVRML() 

This method returns a VRML timer string that contains the appropriate timing 
information for the beam 

i» setAppendLineFeed 

public static void setAppendLineFeed(boolean pAppendLineFeed) 

This is a static method used to indicate whether a line feed is desired at the end 
of every line, 'true' indicates a linefeed is desired and 'false' indicates that a space 
is desired" 

& getAppendLineFeed 

public static boolean getAppendLineFeed() 

This is a static method that returns the current line appendage. 

All Packages  Class Hierarchy This Package Previous Next  Index 
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APPENDIX G. RRA VIDEO INFORMATION 

A.       INTRODUCTION 

This appendix provides information on how to obtain a copy of a video that shows the abilities of 

the RRA API and the simulations and visualizations obtained from it. The point of contact for obtaining a 

copy is Dr. Don Brutzman, brutzman@nps.navy.mil. 
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APPENDIX H. RRA CD ROM INFORMATION 

A.       INTRODUCTION 

This appendix provides information on how to obtain a copy of a CD ROM that has this thesis, 

the RRA API source code, example programs using the RRA API, the simulations and visualizations 

obtained from using the RRA API and the contents of Appendix D, Appendix E and Appendix F. The 

point of contact for obtaining a copy is Dr. Don Brutzman, brutzman@nps.navy.mil. 
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